Suppr超能文献

基于Tiny-Yolov3架构的行人检测模型,用于可穿戴设备以辅助视障人士。

Pedestrian detection model based on Tiny-Yolov3 architecture for wearable devices to visually impaired assistance.

作者信息

Maya-Martínez Sergio-Uriel, Argüelles-Cruz Amadeo-José, Guzmán-Zavaleta Zobeida-Jezabel, Ramírez-Cadena Miguel-de-Jesús

机构信息

Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City, Mexico.

Universidad de las Américas Puebla, Puebla, Mexico.

出版信息

Front Robot AI. 2023 Mar 16;10:1052509. doi: 10.3389/frobt.2023.1052509. eCollection 2023.

Abstract

Wearable assistive devices for the visually impaired whose technology is based on video camera devices represent a challenge in rapid evolution, where one of the main problems is to find computer vision algorithms that can be implemented in low-cost embedded devices. This work presents a Tiny You Only Look Once architecture for pedestrian detection, which can be implemented in low-cost wearable devices as an alternative for the development of assistive technologies for the visually impaired. The recall results of the proposed refined model represent an improvement of 71% working with four anchor boxes and 66% with six anchor boxes compared to the original model. The accuracy achieved on the same data set shows an increase of 14% and 25%, respectively. The F1 calculation shows a refinement of 57% and 55%. The average accuracy of the models achieved an improvement of 87% and 99%. The number of correctly detected objects was 3098 and 2892 for four and six anchor boxes, respectively, whose performance is better by 77% and 65% compared to the original, which correctly detected 1743 objects. Finally, the model was optimized for the Jetson Nano embedded system, a case study for low-power embedded devices, and in a desktop computer. In both cases, the graphics processing unit (GPU) and central processing unit were tested, and a documented comparison of solutions aimed at serving visually impaired people was performed. We performed the desktop tests with a RTX 2070S graphics card, and the image processing took about 2.8 ms. The Jetson Nano board could process an image in about 110 ms, offering the opportunity to generate alert notification procedures in support of visually impaired mobility.

摘要

基于摄像头设备技术的视障人士可穿戴辅助设备正处于快速发展的阶段,面临着诸多挑战,其中一个主要问题是要找到能够在低成本嵌入式设备上实现的计算机视觉算法。这项工作提出了一种用于行人检测的轻量级You Only Look Once(YOLO)架构,它可以在低成本可穿戴设备上实现,作为开发视障人士辅助技术的一种选择。与原始模型相比,所提出的改进模型在使用四个锚框时召回率提高了71%,使用六个锚框时提高了66%。在同一数据集上实现的准确率分别提高了14%和25%。F1计算显示改进了57%和55%。模型的平均准确率提高了87%和99%。对于四个和六个锚框,正确检测到的物体数量分别为3098个和2892个,其性能比正确检测到1743个物体的原始模型分别提高了77%和65%。最后,该模型针对Jetson Nano嵌入式系统(一种低功耗嵌入式设备的案例研究)和台式计算机进行了优化。在这两种情况下,都对图形处理单元(GPU)和中央处理器进行了测试,并针对为视障人士服务的解决方案进行了记录在案的比较。我们使用RTX 2070S显卡进行了桌面测试,图像处理大约需要2.8毫秒。Jetson Nano开发板可以在大约110毫秒内处理一幅图像,这为生成支持视障人士出行的警报通知程序提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93c9/10061079/cedb52e88b68/frobt-10-1052509-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验