State Key Laboratory of Polymer Materials Engineering, Polymer, Research Institute, Sichuan University, Chengdu, 610065, China.
Department of Pediatric Dentistry, West China School of Stomatology, State Key Laboratory of Oral, Diseases, Sichuan University, Chengdu, 610041, China.
Angew Chem Int Ed Engl. 2023 Jun 5;62(23):e202303446. doi: 10.1002/anie.202303446. Epub 2023 Apr 26.
Despite the remarkable progress in ultrastrong mechanical laminate materials, the simultaneous achievement of toughness, stretchability and self-healing properties in biomimetic layered nanocomposites remains a great challenge due to the intrinsic limitations of their hard essences and lack of effective stress transfer at the organic-inorganic fragile boundary. Here, an ultratough nanocomposite laminate is prepared by constructing chain-sliding cross-linking at the interface between sulfonated graphene nanosheets and polyurethane layers based on the ring molecules sliding on the linear polymer chains to release stresses. Unlike traditional supramolecular bonding toughening with limited sliding spacing, our strategy enables interfacial molecular chains reversible slippage when the inorganic nanosheets bear stretching force, providing sufficient interlayer spatial distance for relative sliding to dissipate more energy. The resulting laminates exhibit strong strength (22.33 MPa), supertoughness (219.08 MJ m ), ultrahigh stretchability (>1900 %) and self-healing ability (99.7 %), which far surpass most of reported synthetic and natural laminate materials. Moreover, the fabricated proof-of-concept electronic skin shows excellent flexibility, sensitivity and healability for human physiological signals monitoring. This strategy breaks through the challenge that traditional layered nanocomposites are intrinsically stiff and opens up the functional application of layered nanocomposites in flexible devices.
尽管在超坚固机械层状材料方面取得了显著进展,但由于其硬性本质的固有限制以及在有机-无机脆弱边界处缺乏有效的应力传递,仿生层状纳米复合材料在韧性、拉伸性和自修复性能方面的同时实现仍然是一个巨大的挑战。在这里,通过在磺化石墨烯纳米片和聚氨酯层之间的界面上构建基于环状分子在线性聚合物链上滑动以释放应力的链滑动交联,制备了一种超坚韧的纳米复合材料层压板。与具有有限滑动间距的传统超分子键合增韧不同,当无机纳米片承受拉伸力时,我们的策略使界面分子链能够可逆滑动,为相对滑动提供足够的层间空间距离以耗散更多能量。由此得到的层压板表现出高强度(22.33 MPa)、超韧性(219.08 MJ·m)、超高拉伸性(>1900%)和自修复能力(99.7%),远远超过大多数报道的合成和天然层压板材料。此外,所制造的概念验证电子皮肤具有出色的灵活性、灵敏度和对人体生理信号监测的可修复性。该策略突破了传统层状纳米复合材料本质上刚性的挑战,为层状纳米复合材料在柔性器件中的功能应用开辟了道路。