Suppr超能文献

使用深度学习技术重建多晶材料不完全 X 射线衍射极点图。

Reconstruction of incomplete X-ray diffraction pole figures of oligocrystalline materials using deep learning.

机构信息

Optik und Strahlrohre, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.

Intelligent Embedded Systems, University of Kassel, Wilhelmshöher Allee 73, 34121, Kassel, Hessen, Germany.

出版信息

Sci Rep. 2023 Apr 3;13(1):5410. doi: 10.1038/s41598-023-31580-1.

Abstract

X-ray diffraction crystallography allows non-destructive examination of crystal structures. Furthermore, it has low requirements regarding surface preparation, especially compared to electron backscatter diffraction. However, up to now, X-ray diffraction has been highly time-consuming in standard laboratory conditions since intensities on multiple lattice planes have to be recorded by rotating and tilting. Furthermore, examining oligocrystalline materials is challenging due to the limited number of diffraction spots. Moreover, commonly used evaluation methods for crystallographic orientation analysis need multiple lattice planes for a reliable pole figure reconstruction. In this article, we propose a deep-learning-based method for oligocrystalline specimens, i.e., specimens with up to three grains of arbitrary crystal orientations. Our approach allows faster experimentation due to accurate reconstructions of pole figure regions, which we did not probe experimentally. In contrast to other methods, the pole figure is reconstructed based on only a single incomplete pole figure. To speed up the development of our proposed method and for usage in other machine learning algorithms, we introduce a GPU-based simulation for data generation. Furthermore, we present a pole widths standardization technique using a custom deep learning architecture that makes algorithms more robust against influences from the experiment setup and material.

摘要

X 射线衍射晶体学允许对晶体结构进行非破坏性检查。此外,它对表面准备的要求较低,特别是与电子背散射衍射相比。然而,到目前为止,由于必须通过旋转和倾斜来记录多个晶格平面的强度,因此在标准实验室条件下,X 射线衍射的速度非常慢。此外,由于衍射点的数量有限,检查多晶材料具有挑战性。此外,通常用于晶体取向分析的评估方法需要多个晶格平面才能进行可靠的极点图重建。在本文中,我们提出了一种基于深度学习的方法,用于研究多晶样品,即具有任意晶体取向的最多三个晶粒的样品。我们的方法由于可以准确重建极点图区域,因此可以加快实验速度,而这些区域我们并没有进行实验探测。与其他方法不同,极点图是基于单个不完整的极点图重建的。为了加快我们提出的方法的发展并在其他机器学习算法中使用,我们引入了一种基于 GPU 的数据生成模拟。此外,我们还提出了一种极点宽度标准化技术,该技术使用定制的深度学习架构,使算法对实验设置和材料的影响更具鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d64e/10070271/47e7be32b181/41598_2023_31580_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验