Suppr超能文献

材料表征中用于最小化测量时间的数据选择策略。

Data selection strategies for minimizing measurement time in materials characterization.

作者信息

Liehr Alexander, Dingel Kristina, Kottke Daniel, Degener Sebastian, Meier David, Sick Bernhard, Niendorf Thomas

机构信息

Institute of Materials Engineering, University of Kassel, Moenchebergstr. 3, 34125, Kassel, Germany.

Intelligent Embedded Systems, University of Kassel, Wilhelmshöher Allee 71-73, 34121, Kassel, Germany.

出版信息

Sci Rep. 2025 Apr 30;15(1):15182. doi: 10.1038/s41598-025-96221-1.

Abstract

Every new material needs to be assessed and qualified for an envisaged application. A steadily increasing number of new alloys, designed to address challenges in terms of reliability and sustainability, poses significant demands on well-known analysis methods in terms of their efficiency, e.g., in X-ray diffraction analysis. Particularly in laboratory measurements, where the intensities in diffraction experiments tend to be low, a possibility to adapt the exposure time to the prevailing boundary conditions, i.e., the investigated microstructure, is seen to be a very effective approach. The counting time is decisive for, e.g., complex texture, phase, and residual stress measurements. Traditionally, more measurement points and, thus, longer data collection times lead to more accurate information. Here, too short counting times result in poor signal-to-background ratios and dominant signal noise, respectively, rendering subsequent evaluation more difficult or even impossible. Then, it is necessary to repeat experiments with adjusted, usually significantly longer counting time. To prevent redundant measurements, it is state-of-the-art to always consider the entire measurement range, regardless of whether the investigated points are relevant and contribute to the subsequent materials characterization, respectively. Obviously, this kind of approach is extremely time-consuming and, eventually, not efficient. The present study highlights that specific selection strategies, taking into account the prevailing microstructure of the alloy in focus, can decrease counting times in X-ray energy dispersive diffraction experiments without any detrimental effect on data quality for the subsequent analysis. All relevant data, including the code, are carefully assessed and will be the basis for a widely adapted strategy enabling efficient measurements not only in lab environments but also in large-scale facilities.

摘要

每种新材料都需要针对预期应用进行评估和鉴定。为应对可靠性和可持续性方面的挑战而设计的新型合金数量不断增加,这对诸如X射线衍射分析等知名分析方法的效率提出了重大要求。特别是在实验室测量中,衍射实验的强度往往较低,根据当前边界条件(即所研究的微观结构)调整曝光时间被视为一种非常有效的方法。计数时间对于例如复杂织构、相和残余应力测量起着决定性作用。传统上,更多的测量点以及更长的数据采集时间会带来更准确的信息。在此,过短的计数时间分别会导致信背比不佳和信号噪声占主导,使得后续评估更加困难甚至无法进行。然后,就需要以调整后的、通常显著更长的计数时间重复实验。为避免冗余测量,目前的技术水平是始终考虑整个测量范围,而不管所研究的点是否相关以及是否分别对后续材料表征有贡献。显然,这种方法极其耗时,最终效率不高。本研究强调,考虑到所关注合金的当前微观结构的特定选择策略,可以减少X射线能量色散衍射实验中的计数时间,而不会对后续分析的数据质量产生任何不利影响。所有相关数据,包括代码,都经过仔细评估,并将成为一种广泛适用策略的基础,该策略不仅能在实验室环境中,还能在大型设施中实现高效测量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c478/12043836/0e8d08023486/41598_2025_96221_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验