Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA.
Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23284, USA.
Sci Rep. 2023 Apr 3;13(1):5420. doi: 10.1038/s41598-023-32568-7.
Changes in the three-dimensional (3D) structure of the genome are an emerging hallmark of cancer. Cancer-associated copy number variants and single nucleotide polymorphisms promote rewiring of chromatin loops, disruption of topologically associating domains (TADs), active/inactive chromatin state switching, leading to oncogene expression and silencing of tumor suppressors. However, little is known about 3D changes during cancer progression to a chemotherapy-resistant state. We integrated chromatin conformation capture (Hi-C), RNA-seq, and whole-genome sequencing obtained from triple-negative breast cancer patient-derived xenograft primary tumors (UCD52) and carboplatin-resistant samples and found increased short-range (< 2 Mb) interactions, chromatin looping, formation of TAD, chromatin state switching into a more active state, and amplification of ATP-binding cassette transporters. Transcriptome changes suggested the role of long-noncoding RNAs in carboplatin resistance. Rewiring of the 3D genome was associated with TP53, TP63, BATF, FOS-JUN family of transcription factors and led to activation of aggressiveness-, metastasis- and other cancer-related pathways. Integrative analysis highlighted increased ribosome biogenesis and oxidative phosphorylation, suggesting the role of mitochondrial energy metabolism. Our results suggest that 3D genome remodeling may be a key mechanism underlying carboplatin resistance.
基因组的三维(3D)结构变化是癌症的一个新兴标志。与癌症相关的拷贝数变异和单核苷酸多态性促进染色质环的重布线、拓扑关联域(TAD)的破坏、活性/非活性染色质状态的转换,导致癌基因的表达和肿瘤抑制基因的沉默。然而,对于癌症进展为化疗耐药状态时的 3D 变化知之甚少。我们整合了从三阴性乳腺癌患者来源的异种移植原发性肿瘤(UCD52)和卡铂耐药样本中获得的染色质构象捕获(Hi-C)、RNA-seq 和全基因组测序,发现短距离(<2 Mb)相互作用、染色质环、TAD 形成、染色质状态转换为更活跃状态以及 ATP 结合盒转运蛋白的扩增增加。转录组变化表明长非编码 RNA 在卡铂耐药中的作用。3D 基因组的重布线与 TP53、TP63、BATF、FOS-JUN 转录因子家族有关,并导致侵袭性、转移和其他与癌症相关的途径的激活。综合分析强调了核糖体生物发生和氧化磷酸化的增加,表明线粒体能量代谢的作用。我们的结果表明,3D 基因组重塑可能是卡铂耐药的关键机制。