Suppr超能文献

基于递归图编码和 MobileNet-v3 模型的变速条件轴承故障诊断方法。

A variable-speed-condition bearing fault diagnosis methodology with recurrence plot coding and MobileNet-v3 model.

机构信息

School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, People's Republic of China.

出版信息

Rev Sci Instrum. 2023 Mar 1;94(3):034710. doi: 10.1063/5.0125548.

Abstract

To improve the quality of the non-stationary vibration features and the performance of the variable-speed-condition fault diagnosis, this paper proposed a bearing fault diagnosis approach with Recurrence Plot (RP) coding and a MobileNet-v3 model. 3500 RP images with seven fault modes were obtained with angular domain resampling technology and RP coding and were input into the MobileNet-v3 model for bearing fault diagnosis. Additionally, we performed a bearing vibration experiment to verify the effectiveness of the proposed method. The results show that the RP image coding method with 99.99% test accuracy is superior to the other three image coding methods such as Gramian Angular Difference Fields, Gramian Angular Summation Fields, and Markov Transition Fields with 96.88%, 90.20%, and 72.51%, indicating that the RP image coding method is more suitable for characterizing variable-speed fault features. Compared with four diagnosis methods such as MobileNet-v3 (small), MobileNet-v3 (large), ResNet-18, and DenseNet121, and two state-of-the-art approaches such as Symmetrized Dot Pattern and Deep Convolutional Neural Networks, RP and Convolutional Neural Networks, it is found that the proposed RP+MobileNet-v3 model has the best performance in all aspects with diagnosis accuracy, parameter numbers, and Graphics Processing Unit usage, overcoming the over-fitting phenomenon and increasing the anti-noise performance. It is concluded that the proposed RP+MobileNet-v3 model has a higher diagnostic accuracy with fewer parameters and is a lighter model.

摘要

为了提高非平稳振动特征的质量和变速条件故障诊断的性能,本文提出了一种基于递归图(RP)编码和 MobileNet-v3 模型的轴承故障诊断方法。利用角度域重采样技术和 RP 编码得到了 7 种故障模式的 3500 个 RP 图像,并将其输入到 MobileNet-v3 模型中进行轴承故障诊断。此外,还进行了轴承振动实验以验证所提出方法的有效性。结果表明,具有 99.99%测试精度的 RP 图像编码方法优于 Gramian Angular Difference Fields、Gramian Angular Summation Fields 和 Markov Transition Fields 等其他三种图像编码方法,其准确率分别为 96.88%、90.20%和 72.51%,这表明 RP 图像编码方法更适合刻画变速故障特征。与 MobileNet-v3(小)、MobileNet-v3(大)、ResNet-18 和 DenseNet121 等四种诊断方法以及 Symmetrized Dot Pattern 和 Deep Convolutional Neural Networks 等两种最先进的方法相比,发现 RP 和卷积神经网络与 MobileNet-v3 的组合模型在诊断准确率、参数数量和图形处理单元使用方面均具有最佳性能,克服了过拟合现象并提高了抗噪性能。因此,所提出的 RP+MobileNet-v3 模型具有更高的诊断准确率、更少的参数和更轻的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验