Suppr超能文献

由二维层铁电体的面外局域极化实现的 GaN/α-InSe HEMTs 中的可重构物理势垒。

Reconfigurable Physical Reservoir in GaN/α-InSe HEMTs Enabled by Out-of-Plane Local Polarization of Ferroelectric 2D Layer.

机构信息

School of Electronic Engineering, Soongsil University, Seoul 06938, South Korea.

Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.

出版信息

ACS Nano. 2023 Apr 25;17(8):7695-7704. doi: 10.1021/acsnano.3c00187. Epub 2023 Apr 4.

Abstract

Significant effort for demonstrating a gallium nitride (GaN)-based ferroelectric metal-oxide-semiconductor (MOS)-high-electron-mobility transistor (HEMT) for reconfigurable operation via simple pulse operation has been hindered by the lack of suitable materials, gate structures, and intrinsic depolarization effects. In this study, we have demonstrated artificial synapses using a GaN-based MOS-HEMT integrated with an α-InSe ferroelectric semiconductor. The van der Waals heterostructure of GaN/α-InSe provides a potential to achieve high-frequency operation driven by a ferroelectrically coupled two-dimensional electron gas (2DEG). Moreover, the semiconducting α-InSe features a steep subthreshold slope with a high ON/OFF ratio (∼10). The self-aligned α-InSe layer with the gate electrode suppresses the in-plane polarization while promoting the out-of-plane (OOP) polarization of α-InSe, resulting in a steep subthreshold slope (10 mV/dec) and creating a large hysteresis (2 V). Furthermore, based on the short-term plasticity (STP) characteristics of the fabricated ferroelectric HEMT, we demonstrated reservoir computing (RC) for image classification. We believe that the ferroelectric GaN/α-InSe HEMT can provide a viable pathway toward ultrafast neuromorphic computing.

摘要

通过简单的脉冲操作来展示基于氮化镓 (GaN) 的铁电金属氧化物半导体 (MOS) - 高电子迁移率晶体管 (HEMT) 的可重构操作,需要付出巨大的努力,但由于缺乏合适的材料、栅极结构和固有去极化效应,这一目标一直难以实现。在本研究中,我们使用基于 GaN 的 MOS-HEMT 与 α-InSe 铁电半导体集成,展示了人工突触。GaN/α-InSe 的范德华异质结构提供了一个由铁电耦合二维电子气 (2DEG) 驱动的高频操作的潜力。此外,半导体 α-InSe 具有陡峭的亚阈值斜率和高导通/关断比(约 10)。自对准的带栅极的 α-InSe 层抑制了平面内极化,同时促进了 α-InSe 的面外 (OOP) 极化,从而产生陡峭的亚阈值斜率(10 mV/dec)和大的滞后(2 V)。此外,基于所制造的铁电 HEMT 的短期可塑性 (STP) 特性,我们展示了用于图像分类的储层计算 (RC)。我们相信,铁电 GaN/α-InSe HEMT 可为超快神经形态计算提供可行途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验