Suppr超能文献

基于全范德瓦尔斯光电铁电场效应晶体管的集成内存传感器与人工视觉计算

Integrated In-Memory Sensor and Computing of Artificial Vision Based on Full-vdW Optoelectronic Ferroelectric Field-Effect Transistor.

作者信息

Wang Peng, Li Jie, Xue Wuhong, Ci Wenjuan, Jiang Fengxian, Shi Lei, Zhou Feichi, Zhou Peng, Xu Xiaohong

机构信息

Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, 030031, China.

School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518000, China.

出版信息

Adv Sci (Weinh). 2024 Jan;11(3):e2305679. doi: 10.1002/advs.202305679. Epub 2023 Nov 29.

Abstract

The development and application of artificial intelligence have led to the exploitation of low-power and compact intelligent information-processing systems integrated with sensing, memory, and neuromorphic computing functions. The 2D van der Waals (vdW) materials with abundant reservoirs for arbitrary stacking based on functions and enabling continued device downscaling offer an attractive alternative for continuously promoting artificial intelligence. In this study, full 2D SnS /h-BN/CuInP S (CIPS)-based ferroelectric field-effect transistors (Fe-FETs) and utilized light-induced ferroelectric polarization reversal to achieve excellent memory properties and multi-functional sensing-memory-computing vision simulations are designed. The device exhibits a high on/off current ratio of over 10 , long retention time (>10  s), stable cyclic endurance (>350 cycles), and 128 multilevel current states (7-bit). In addition, fundamental synaptic plasticity characteristics are emulated including paired-pulse facilitation (PPF), short-term plasticity (STP), long-term plasticity (LTP), long-term potentiation, and long-term depression. A ferroelectric optoelectronic reservoir computing system for the Modified National Institute of Standards and Technology (MNIST) handwritten digital recognition achieved a high accuracy of 93.62%. Furthermore, retina-like light adaptation and Pavlovian conditioning are successfully mimicked. These results provide a strategy for developing a multilevel memory and novel neuromorphic vision systems with integrated sensing-memory-processing.

摘要

人工智能的发展与应用推动了集成传感、存储和神经形态计算功能的低功耗紧凑型智能信息处理系统的开发。基于功能具有丰富存储库且能持续缩小器件尺寸的二维范德华(vdW)材料,为持续推动人工智能提供了极具吸引力的选择。在本研究中,设计了基于全二维SnS/h-BN/CuInP S(CIPS)的铁电场效应晶体管(Fe-FET),并利用光诱导铁电极化反转实现了优异的存储特性以及多功能传感-存储-计算视觉模拟。该器件展现出超过10 的高开/关电流比、长保持时间(>10 秒)、稳定的循环耐久性(>350次循环)以及128个多级电流状态(7位)。此外,还模拟了基本的突触可塑性特征,包括双脉冲易化(PPF)、短期可塑性(STP)、长期可塑性(LTP)、长期增强和长期抑制。用于改进的美国国家标准与技术研究院(MNIST)手写数字识别的铁电光电子存储计算系统实现了93.62%的高精度。此外,成功模拟了类似视网膜的光适应和巴甫洛夫条件反射。这些结果为开发具有集成传感-存储-处理功能的多级存储器和新型神经形态视觉系统提供了一种策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e099/10797471/b97a1b79bdd5/ADVS-11-2305679-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验