Department of Molecular and Cellular Pharmacology.
Graduate Program in Human Genetics and Genomics.
JCI Insight. 2023 May 22;8(10):e164954. doi: 10.1172/jci.insight.164954.
Sorbitol dehydrogenase (SORD) deficiency has been identified as the most frequent autosomal recessive form of hereditary neuropathy. Loss of SORD causes high sorbitol levels in tissues due to the inability to convert sorbitol to fructose in the 2-step polyol pathway, leading to degenerative neuropathy. The underlying mechanisms of sorbitol-induced degeneration have not been fully elucidated, and no current FDA-approved therapeutic options are available to reduce sorbitol levels in the nervous system. Here, in a Drosophila model of SORD deficiency, we showed synaptic degeneration in the brain, neurotransmission defect, locomotor impairment, and structural abnormalities in the neuromuscular junctions. In addition, we found reduced ATP production in the brain and ROS accumulation in the CNS and muscle, indicating mitochondrial dysfunction. Applied Therapeutics has developed a CNS-penetrant next-generation aldose reductase inhibitor (ARI), AT-007 (govorestat), which inhibits the conversion of glucose to sorbitol. AT-007 significantly reduced sorbitol levels in patient-derived fibroblasts, induced pluripotent stem cell-derived (iPSC-derived) motor neurons, and Drosophila brains. AT-007 feeding in Sord-deficient Drosophila mitigated synaptic degeneration and significantly improved synaptic transduction, locomotor activity, and mitochondrial function. Moreover, AT-007 treatment significantly reduced ROS accumulation in Drosophila CNS, muscle, and patient-derived fibroblasts. These findings uncover the molecular and cellular pathophysiology of SORD neuropathy and provide a potential treatment strategy for patients with SORD deficiency.
山梨醇脱氢酶(SORD)缺乏症已被确定为遗传性周围神经病中最常见的常染色体隐性形式。由于不能在两步多元醇途径中将山梨醇转化为果糖,SORD 的缺失导致组织中山梨醇水平升高,从而导致退行性神经病。山梨醇诱导变性的潜在机制尚未完全阐明,目前尚无获得 FDA 批准的治疗方法可降低神经系统中山梨醇的水平。在这里,在 SORD 缺乏的果蝇模型中,我们显示了大脑中的突触退化、神经传递缺陷、运动障碍以及神经肌肉接头的结构异常。此外,我们发现大脑中的 ATP 产生减少和中枢神经系统和肌肉中的 ROS 积累,表明线粒体功能障碍。Applied Therapeutics 开发了一种可穿透中枢神经系统的新一代醛糖还原酶抑制剂(ARI),AT-007(govorestat),可抑制葡萄糖向山梨醇的转化。AT-007 显著降低了患者来源的成纤维细胞、诱导多能干细胞衍生(iPSC 衍生)运动神经元和果蝇大脑中的山梨醇水平。Sord 缺陷型果蝇中的 AT-007 喂养减轻了突触退化,并显著改善了突触转导、运动活性和线粒体功能。此外,AT-007 治疗显著减少了果蝇中枢神经系统、肌肉和患者来源的成纤维细胞中的 ROS 积累。这些发现揭示了 SORD 神经病的分子和细胞病理生理学,并为 SORD 缺乏症患者提供了一种潜在的治疗策略。