Suppr超能文献

通过 govorestat 降低山梨糖醇可改善山梨糖醇脱氢酶缺乏症中的突触功能障碍和神经退行性变。

Sorbitol reduction via govorestat ameliorates synaptic dysfunction and neurodegeneration in sorbitol dehydrogenase deficiency.

机构信息

Department of Molecular and Cellular Pharmacology.

Graduate Program in Human Genetics and Genomics.

出版信息

JCI Insight. 2023 May 22;8(10):e164954. doi: 10.1172/jci.insight.164954.

Abstract

Sorbitol dehydrogenase (SORD) deficiency has been identified as the most frequent autosomal recessive form of hereditary neuropathy. Loss of SORD causes high sorbitol levels in tissues due to the inability to convert sorbitol to fructose in the 2-step polyol pathway, leading to degenerative neuropathy. The underlying mechanisms of sorbitol-induced degeneration have not been fully elucidated, and no current FDA-approved therapeutic options are available to reduce sorbitol levels in the nervous system. Here, in a Drosophila model of SORD deficiency, we showed synaptic degeneration in the brain, neurotransmission defect, locomotor impairment, and structural abnormalities in the neuromuscular junctions. In addition, we found reduced ATP production in the brain and ROS accumulation in the CNS and muscle, indicating mitochondrial dysfunction. Applied Therapeutics has developed a CNS-penetrant next-generation aldose reductase inhibitor (ARI), AT-007 (govorestat), which inhibits the conversion of glucose to sorbitol. AT-007 significantly reduced sorbitol levels in patient-derived fibroblasts, induced pluripotent stem cell-derived (iPSC-derived) motor neurons, and Drosophila brains. AT-007 feeding in Sord-deficient Drosophila mitigated synaptic degeneration and significantly improved synaptic transduction, locomotor activity, and mitochondrial function. Moreover, AT-007 treatment significantly reduced ROS accumulation in Drosophila CNS, muscle, and patient-derived fibroblasts. These findings uncover the molecular and cellular pathophysiology of SORD neuropathy and provide a potential treatment strategy for patients with SORD deficiency.

摘要

山梨醇脱氢酶(SORD)缺乏症已被确定为遗传性周围神经病中最常见的常染色体隐性形式。由于不能在两步多元醇途径中将山梨醇转化为果糖,SORD 的缺失导致组织中山梨醇水平升高,从而导致退行性神经病。山梨醇诱导变性的潜在机制尚未完全阐明,目前尚无获得 FDA 批准的治疗方法可降低神经系统中山梨醇的水平。在这里,在 SORD 缺乏的果蝇模型中,我们显示了大脑中的突触退化、神经传递缺陷、运动障碍以及神经肌肉接头的结构异常。此外,我们发现大脑中的 ATP 产生减少和中枢神经系统和肌肉中的 ROS 积累,表明线粒体功能障碍。Applied Therapeutics 开发了一种可穿透中枢神经系统的新一代醛糖还原酶抑制剂(ARI),AT-007(govorestat),可抑制葡萄糖向山梨醇的转化。AT-007 显著降低了患者来源的成纤维细胞、诱导多能干细胞衍生(iPSC 衍生)运动神经元和果蝇大脑中的山梨醇水平。Sord 缺陷型果蝇中的 AT-007 喂养减轻了突触退化,并显著改善了突触转导、运动活性和线粒体功能。此外,AT-007 治疗显著减少了果蝇中枢神经系统、肌肉和患者来源的成纤维细胞中的 ROS 积累。这些发现揭示了 SORD 神经病的分子和细胞病理生理学,并为 SORD 缺乏症患者提供了一种潜在的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37a7/10322690/78c29705f592/jciinsight-8-164954-g194.jpg

相似文献

3
Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes.
Nat Genet. 2020 May;52(5):473-481. doi: 10.1038/s41588-020-0615-4. Epub 2020 May 4.
4
Identification and characterisation of a sequence related to human sorbitol dehydrogenase.
Eur J Biochem. 1997 May 1;245(3):760-7. doi: 10.1111/j.1432-1033.1997.00760.x.
6
Association study of sorbitol dehydrogenase -888G>C polymorphism with type 2 diabetic retinopathy in Caucasian-Brazilians.
Exp Eye Res. 2013 Oct;115:140-3. doi: 10.1016/j.exer.2013.06.027. Epub 2013 Jul 11.
8
Sorbitol can fuel mouse sperm motility and protein tyrosine phosphorylation via sorbitol dehydrogenase.
Biol Reprod. 2009 Jan;80(1):124-33. doi: 10.1095/biolreprod.108.068882. Epub 2008 Sep 17.
10

引用本文的文献

1
Modeling of Charcot-Marie-Tooth disease in zebrafish.
Front Mol Neurosci. 2025 Aug 4;18:1641793. doi: 10.3389/fnmol.2025.1641793. eCollection 2025.
3
Nuclear NAD synthase nicotinamide mononucleotide adenylyltransferase 1 contributes to nuclear atypia and promotes glioma growth.
Neurooncol Adv. 2025 Feb 3;7(1):vdaf029. doi: 10.1093/noajnl/vdaf029. eCollection 2025 Jan-Dec.
4
Health impacts of asphalt emissions: Examining neurological risks and the need for long-term exposure mitigation.
J Hazard Mater. 2025 Mar 15;486:136849. doi: 10.1016/j.jhazmat.2024.136849. Epub 2024 Dec 14.
5
Targeted single cell expression profiling identifies integrators of sleep and metabolic state.
bioRxiv. 2024 Sep 27:2024.09.25.614841. doi: 10.1101/2024.09.25.614841.
6
Loss of Fic causes progressive neurodegeneration in a Drosophila model of hereditary spastic paraplegia.
Biochim Biophys Acta Mol Basis Dis. 2024 Oct;1870(7):167348. doi: 10.1016/j.bbadis.2024.167348. Epub 2024 Jul 8.
8
High-resolution, high-throughput analysis of geotactic behavior.
bioRxiv. 2024 Jun 8:2024.06.07.597941. doi: 10.1101/2024.06.07.597941.
9
Advances and challenges in modeling inherited peripheral neuropathies using iPSCs.
Exp Mol Med. 2024 Jun;56(6):1348-1364. doi: 10.1038/s12276-024-01250-x. Epub 2024 Jun 3.
10
Generation of 3 patient induced Pluripotent stem cell lines containing SORD mutations linked to a recessive neuropathy.
Stem Cell Res. 2024 Aug;78:103449. doi: 10.1016/j.scr.2024.103449. Epub 2024 May 22.

本文引用的文献

1
Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies.
Int J Mol Sci. 2021 Jun 3;22(11):6048. doi: 10.3390/ijms22116048.
2
Evaluation of SORD mutations as a novel cause of Charcot-Marie-Tooth disease.
Ann Clin Transl Neurol. 2021 Jan;8(1):266-270. doi: 10.1002/acn3.51268. Epub 2020 Dec 12.
3
New and potential strategies for the treatment of PMM2-CDG.
Biochim Biophys Acta Gen Subj. 2020 Nov;1864(11):129686. doi: 10.1016/j.bbagen.2020.129686. Epub 2020 Jul 23.
4
Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes.
Nat Genet. 2020 May;52(5):473-481. doi: 10.1038/s41588-020-0615-4. Epub 2020 May 4.
5
Defects in Axonal Transport in Inherited Neuropathies.
J Neuromuscul Dis. 2019;6(4):401-419. doi: 10.3233/JND-190427.
8
Redox imbalance stress in diabetes mellitus: Role of the polyol pathway.
Animal Model Exp Med. 2018 Mar;1(1):7-13. doi: 10.1002/ame2.12001. Epub 2018 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验