School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
ACS Nano. 2023 Apr 25;17(8):7366-7376. doi: 10.1021/acsnano.2c11463. Epub 2023 Apr 4.
Relative to conventional wet-chemical synthesis techniques, on-surface synthesis of organic networks in ultrahigh vacuum has few control parameters. The molecular deposition rate and substrate temperature are typically the only synthesis variables to be adjusted dynamically. Here we demonstrate that reducing conditions in the vacuum environment can be created and controlled without dedicated sources─relying only on backfilled hydrogen gas and ion gauge filaments─and can dramatically influence the Ullmann-like on-surface reaction used for synthesizing two-dimensional covalent organic frameworks (2D COFs). Using tribromo dimethylmethylene-bridged triphenylamine ((Br)DTPA) as monomer precursors, we find that atomic hydrogen (H) blocks aryl-aryl bond formation to such an extent that we suspect this reaction may be a factor in limiting the ultimate size of 2D COFs created through on-surface synthesis. Conversely, we show that control of the relative monomer and hydrogen fluxes can be used to produce large self-assembled islands of monomers, dimers, or macrocycle hexamers, which are of interest in their own right. On-surface synthesis of oligomers, from a single precursor, circumvents potential challenges with their protracted wet-chemical synthesis and with multiple deposition sources. Using scanning tunneling microscopy and spectroscopy (STM/STS), we show that changes in the electronic states through this oligomer sequence provide an insightful view of the 2D COF (synthesized in the absence of atomic hydrogen) as the end point in an evolution of electronic structures from the monomer.
相对于传统的湿化学合成技术,在超高真空环境中进行有机网络的表面合成,其可控参数较少。分子沉积速率和基底温度通常是唯一需要动态调整的合成变量。在这里,我们证明了可以在没有专用源的情况下在真空环境中创建和控制还原条件——仅依靠回填氢气和离子计灯丝——这可以显著影响用于合成二维共价有机框架(2D COFs)的 Ullmann 型表面反应。使用三溴二甲撑桥联三苯胺((Br)DTPA)作为单体前体,我们发现原子氢(H)极大地阻止了芳基-芳基键的形成,以至于我们怀疑这种反应可能是限制通过表面合成创建的 2D COFs 最终尺寸的一个因素。相反,我们表明,可以控制单体和氢气相对通量来产生大的单体、二聚体或大环六聚体自组装岛,这些本身就很有趣。通过单一前体进行的低聚物的表面合成,可以避免其冗长的湿化学合成和多个沉积源的潜在挑战。使用扫描隧道显微镜和光谱学(STM/STS),我们表明,通过这个低聚物序列的电子态变化为在没有原子氢的情况下合成的 2D COF 提供了一个深入的观点,因为它是从单体到电子结构演变的终点。