Galeotti G, De Marchi F, Hamzehpoor E, MacLean O, Rajeswara Rao M, Chen Y, Besteiro L V, Dettmann D, Ferrari L, Frezza F, Sheverdyaeva P M, Liu R, Kundu A K, Moras P, Ebrahimi M, Gallagher M C, Rosei F, Perepichka D F, Contini G
Centre Energie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec, Canada.
Istituto di Struttura della Materia, CNR, Roma, Italy.
Nat Mater. 2020 Aug;19(8):874-880. doi: 10.1038/s41563-020-0682-z. Epub 2020 May 18.
Two-dimensional materials with high charge carrier mobility and tunable band gaps have attracted intense research effort for their potential use in nanoelectronics. Two-dimensional π-conjugated polymers constitute a promising subclass because the band structure can be manipulated by varying the molecular building blocks while preserving key features such as Dirac cones and high charge mobility. The major barriers to the application of two-dimensional π-conjugated polymers have been the small domain size and high defect density attained in the syntheses explored so far. Here, we demonstrate the fabrication of mesoscale ordered two-dimensional π-conjugated polymer kagome lattices with semiconducting properties, Dirac cone structures and flat bands on Au(111). This material has been obtained by combining a rigid azatriangulene precursor and a hot dosing approach, which favours molecular diffusion and eliminates voids in the network. These results open opportunities for the synthesis of two-dimensional π-conjugated polymer Dirac cone materials and their integration into devices.
具有高电荷载流子迁移率和可调节带隙的二维材料因其在纳米电子学中的潜在应用而吸引了大量研究工作。二维π共轭聚合物构成了一个有前途的子类,因为其能带结构可以通过改变分子结构单元来操纵,同时保留诸如狄拉克锥和高电荷迁移率等关键特性。二维π共轭聚合物应用的主要障碍一直是迄今为止在合成过程中获得的小畴尺寸和高缺陷密度。在这里,我们展示了在Au(111)上制备具有半导体特性、狄拉克锥结构和平带的中尺度有序二维π共轭聚合物戈薇晶格。这种材料是通过将刚性氮杂三蝶烯前驱体和热剂量方法相结合而获得的,该方法有利于分子扩散并消除网络中的空隙。这些结果为二维π共轭聚合物狄拉克锥材料的合成及其集成到器件中开辟了机会。