Suppr超能文献

支架几何形状与计算流体动力学模拟助力动态培养中的成骨分化

Scaffold geometry and computational fluid dynamics simulation supporting osteogenic differentiation in dynamic culture.

作者信息

Channasanon Somruethai, Kaewkong Pakkanun, Chantaweroad Surapol, Tesavibul Passakorn, Pratumwal Yotsakorn, Otarawanna Somboon, Kirihara Soshu, Tanodekaew Siriporn

机构信息

National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Klongluang, Pathumthani, Thailand.

Joining and Welding Research International (JWRI), Osaka University, Suita, Osaka, Japan.

出版信息

Comput Methods Biomech Biomed Engin. 2024 Apr;27(5):587-598. doi: 10.1080/10255842.2023.2195961. Epub 2023 Apr 4.

Abstract

Geometry of porous scaffolds is critical to the success of cell adhesion, proliferation, and differentiation in bone tissue engineering. In this study, the effect of scaffold geometry on osteogenic differentiation of MC3T3-E1 pre-osteoblasts in a perfusion bioreactor was investigated. Three geometries of oligolactide-HA scaffolds, named Woodpile, LC-1000, and LC-1400, were fabricated with uniform pore size distribution and interconnectivity using stereolithography (SL) technique, and tested to evaluate for the most suitable scaffold geometry. Compressive tests revealed sufficiently high strength of all scaffolds to support new bone formation. The LC-1400 scaffold showed the highest cell proliferation in accordance with the highest level of osteoblast-specific gene expression after 21 days of dynamic culture in a perfusion bioreactor; however, it deposited less amount of calcium than the LC-1000 scaffold. Computational fluid dynamics (CFD) simulation was employed to predict and explain the effect of flow behavior on cell response under dynamic culture. The findings concluded that appropriate flow shear stress enhanced cell differentiation and mineralization in the scaffold, with the LC-1000 scaffold performing best due to its optimal balance between permeability and flow-induced shear stress.

摘要

多孔支架的几何形状对于骨组织工程中细胞黏附、增殖和分化的成功至关重要。在本研究中,研究了支架几何形状对灌注生物反应器中MC3T3-E1前成骨细胞成骨分化的影响。使用立体光刻(SL)技术制造了三种具有均匀孔径分布和互连性的低聚丙交酯-羟基磷灰石(oligolactide-HA)支架,分别命名为木堆结构(Woodpile)、LC-1000和LC-1400,并对其进行测试以评估最合适的支架几何形状。压缩试验表明,所有支架都具有足够高的强度来支持新骨形成。在灌注生物反应器中动态培养21天后,LC-1400支架显示出最高的细胞增殖以及最高水平的成骨细胞特异性基因表达;然而,它沉积的钙量比LC-1000支架少。采用计算流体动力学(CFD)模拟来预测和解释动态培养下流动行为对细胞反应的影响。研究结果得出结论,适当的流动剪切应力可增强支架中的细胞分化和矿化,由于LC-1000支架在渗透性和流动诱导剪切应力之间达到了最佳平衡,其表现最佳。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验