Fagotto-Clavijo Roberto, Lodoso-Torrecilla Irene, Diez-Escudero Anna, Ginebra Maria-Pau
Biomaterials, Biomechanics and Tissue Engineering (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC) and Institute for Research and Innovation in Health (IRIS), Av. Eduard Maristany, 16, Barcelona, 08019, Spain.
Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany, 16, Barcelona, 08019, Spain.
Bioact Mater. 2025 Jun 27;52:719-752. doi: 10.1016/j.bioactmat.2025.05.001. eCollection 2025 Oct.
3D-printing has emerged as a leading technology for fabricating personalized scaffolds for bone regeneration. Among the 3D-printing technologies, vat photopolymerization (VP) stands out for its high precision and versatility. It enables the creation of complex, patient-specific scaffolds with advanced pore architectures that enhance mechanical stability and promote cell growth, key factors for effective bone regeneration. This review provides an overview of the advances made in vat photopolymerization printing of calcium phosphates, covering both the fabrication of full ceramic bodies and polymer-calcium phosphate composites. The review examines key aspects of the fabrication process, including slurry composition, architectural design, and printing accuracy, highlighting their impact on the mechanical and biological performance of 3D-printed scaffolds. The need to tailor porosity, pore size, and geometric design to achieve both mechanical integrity and biological functionality is emphasized by a review of data published in the recent literature. This review demonstrates that advanced geometries like Triply Periodic Minimal Surfaces and nature-inspired designs, achievable with exceptional precision by this technology, enhance mechanical and osteogenic performance. In summary, VP's versatility, driven by the diversity of material options, consolidation methods, and precision opens new horizons for scaffold-based bone regeneration.
3D打印已成为制造用于骨再生的个性化支架的领先技术。在3D打印技术中,光固化成型(VP)因其高精度和多功能性而脱颖而出。它能够制造具有先进孔隙结构的复杂、针对患者的支架,这些结构可增强机械稳定性并促进细胞生长,而这是有效骨再生的关键因素。本文综述了磷酸钙光固化成型打印方面取得的进展,涵盖全陶瓷体以及聚合物 - 磷酸钙复合材料的制造。该综述研究了制造过程的关键方面,包括浆料成分、结构设计和打印精度,强调了它们对3D打印支架的机械和生物学性能的影响。通过回顾近期文献中发表的数据,强调了根据孔隙率、孔径和几何设计进行定制以实现机械完整性和生物学功能的必要性。该综述表明,像三重周期极小曲面这样的先进几何结构以及受自然启发的设计,通过该技术能够以极高的精度实现,可增强机械和成骨性能。总之,材料选择、固结方法和精度的多样性所驱动的VP的多功能性为基于支架的骨再生开辟了新的前景。