Industrial Technology Center of Wakayama, 60 Ogura, Wakayama 649-6261, Japan.
Nitto Denko Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka 567-8680, Japan.
ACS Macro Lett. 2023 Apr 18;12(4):523-529. doi: 10.1021/acsmacrolett.3c00008. Epub 2023 Apr 4.
Triplet-triplet annihilation photon upconversion (TTA-UC) has received significant attention in energy harvesting applications such as solar cells. The realization of high upconversion (UC) performance in the form of films is a crucial factor for the incorporation of this technology into large-area devices. Herein, we propose a porous UC film prepared by an emulsification method with a poly(vinyl alcohol) (PVA) aqueous solution and a toluene solution of chromophores (rubrene/Pd-tetraphenyltetraanthraporphyrin pair) that achieved considerable UC performance in the near-infrared (NIR) (810 nm) to visible (560 nm) range with a maximum quantum yield of 3.7% (out of 50%). Notably, the films displayed a UC emission when using an NIR light-emitting diode as a low-power-density noncoherent light source, which was confirmed by the naked eye. Excitation-power-dependent time-resolved photoluminescence measurements showed almost identical triplet lifetimes of emitter species for the films and toluene solutions; however, lower threshold intensities ( = 1-2 W/cm) were observed for the films than those of the solutions ( = ∼10 W/cm). An evaluation of the remaining toluene in the film and UC emission behavior in liquid nitrogen suggested that the chromophores exist as an amorphous solid in the pores, thus enabling hybrid triplet energy transfer (chromophore mobility based and exciton migration) in this unique film. The presented methodology can be generalized to other wavelengths and can enable diverse applications of the TTA-UC technology.
三重态-三重态湮灭上转换(TTA-UC)在太阳能电池等能量收集应用中受到了广泛关注。以薄膜形式实现高上转换(UC)性能是将该技术纳入大面积器件的关键因素。在此,我们提出了一种通过乳化法制备的多孔 UC 薄膜,该方法使用聚乙烯醇(PVA)水溶液和含有色团(芘/Pd-四苯基四卟啉对)的甲苯溶液。该薄膜在近红外(NIR)(810nm)到可见(560nm)范围内实现了相当高的 UC 性能,量子产率高达 3.7%(50%)。值得注意的是,当使用近红外发光二极管作为低功率密度非相干光源时,薄膜显示出 UC 发射,这可以用肉眼观察到。激发功率依赖的时间分辨光致发光测量表明,薄膜和甲苯溶液中发射体的三重态寿命几乎相同;然而,薄膜的阈值强度(=1-2 W/cm)低于溶液的阈值强度(=∼10 W/cm)。对薄膜中残留甲苯的评估和在液氮中的 UC 发射行为表明,色团以无定形固体的形式存在于孔中,从而使混合三重态能量转移(基于色团迁移和激子迁移)在这种独特的薄膜中成为可能。所提出的方法可以推广到其他波长,并可以为 TTA-UC 技术的各种应用提供支持。