Carrod Andrew J, Berghuis Anton M, Gopalakrishnan Vishnu Nair, Monkman Andrew, Danos Andrew, Börjesson Karl
University of Gothenburg, Department of Chemistry and Molecular Biology Medicinaregatan 7B 41390 Gothenburg Sweden
Dutch Institute for Fundamental Energy Research P.O. Box 6336 5600 HH Eindhoven The Netherlands.
Chem Sci. 2024 Dec 9;16(3):1293-1301. doi: 10.1039/d4sc07004f. eCollection 2025 Jan 15.
Triplet-triplet annihilation photon upconversion (TTA-UC) combines the energy of two photons to provide one of higher energy that can be used to drive photochemical or photophysical processes. TTA-UC proceeds at high efficiencies in dilute solution, but in solid state the efficiency drastically reduces. This is because exciton diffusion, compared to molecular diffusion in solid annihilator films, suffers concentration induced quenching, undermining efficient emission. Here, we provide a method to decouple the triplet exciton diffusion and the annihilation processes using an exciton transporting mediator as host. At low exciton densities emission occurs from the annihilator, while at higher exciton intensities TTA and emission from the mediator is observed. The low concentration of the annihilator dopant gives evidence for a hetero-TTA mechanism being active, annihilation occurring between the mediator and an annihilator molecule. Monte-Carlo simulations qualitatively reproduced the experimental results and give a direction for future optimization. This work hence demonstrates successful separation of exciton diffusion from annihilation by the introduction of a triplet mediator host, and with this approach support the development of highly efficient solid-state TTA-UC materials.
三重态-三重态湮灭光子上转换(TTA-UC)将两个光子的能量合并,以提供一个具有更高能量的光子,该光子可用于驱动光化学或光物理过程。TTA-UC在稀溶液中能高效进行,但在固态中效率会大幅降低。这是因为与固态湮灭剂薄膜中的分子扩散相比,激子扩散会受到浓度诱导猝灭的影响,从而破坏了高效发射。在此,我们提供了一种方法,通过使用激子传输介质作为主体来解耦三重态激子扩散和湮灭过程。在低激子密度下,湮灭剂会发生发射,而在较高激子强度下,则会观察到TTA以及介质的发射。湮灭剂掺杂剂的低浓度证明了异质TTA机制的活性,即湮灭发生在介质和湮灭剂分子之间。蒙特卡罗模拟定性地再现了实验结果,并为未来的优化指明了方向。因此,这项工作通过引入三重态介质主体成功地将激子扩散与湮灭分离,并以此方法支持了高效固态TTA-UC材料的开发。