Suppr超能文献

邻域模式对于执行节点分类的图卷积网络至关重要。

Neighborhood Pattern Is Crucial for Graph Convolutional Networks Performing Node Classification.

作者信息

Zhao Gongpei, Wang Tao, Li Yidong, Jin Yi, Lang Congyan, Feng Songhe

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):8456-8469. doi: 10.1109/TNNLS.2022.3229721. Epub 2024 Jun 3.

Abstract

Graph convolutional networks (GCNs) are widely believed to perform well in the graph node classification task, and homophily assumption plays a core rule in the design of previous GCNs. However, some recent advances on this area have pointed out that homophily may not be a necessity for GCNs. For deeper analysis of the critical factor affecting the performance of GCNs, we first propose a metric, namely, neighborhood class consistency (NCC), to quantitatively characterize the neighborhood patterns of graph datasets. Experiments surprisingly illustrate that our NCC is a better indicator, in comparison to the widely used homophily metrics, to estimate GCN performance for node classification. Furthermore, we propose a topology augmentation graph convolutional network (TA-GCN) framework under the guidance of the NCC metric, which simultaneously learns an augmented graph topology with higher NCC score and a node classifier based on the augmented graph topology. Extensive experiments on six public benchmarks clearly show that the proposed TA-GCN derives ideal topology with higher NCC score given the original graph topology and raw features, and it achieves excellent performance for semi-supervised node classification in comparison to several state-of-the-art (SOTA) baseline algorithms.

摘要

人们普遍认为图卷积网络(GCN)在图节点分类任务中表现出色,并且同质性假设在先前GCN的设计中起着核心作用。然而,该领域最近的一些进展指出,同质性可能并非GCN的必要条件。为了更深入地分析影响GCN性能的关键因素,我们首先提出一种度量标准,即邻域类一致性(NCC),以定量表征图数据集的邻域模式。实验令人惊讶地表明,与广泛使用的同质性度量标准相比,我们的NCC是估计GCN节点分类性能的更好指标。此外,我们在NCC度量标准的指导下提出了一种拓扑增强图卷积网络(TA-GCN)框架,该框架同时学习具有更高NCC分数的增强图拓扑结构以及基于增强图拓扑的节点分类器。在六个公共基准上进行的大量实验清楚地表明,所提出的TA-GCN在给定原始图拓扑和原始特征的情况下能够得出具有更高NCC分数的理想拓扑结构,并且与几种最新的(SOTA)基线算法相比,它在半监督节点分类方面取得了优异的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验