Zhao Gongpei, Wang Tao, Li Yidong, Jin Yi, Lang Congyan, Feng Songhe
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):8456-8469. doi: 10.1109/TNNLS.2022.3229721. Epub 2024 Jun 3.
Graph convolutional networks (GCNs) are widely believed to perform well in the graph node classification task, and homophily assumption plays a core rule in the design of previous GCNs. However, some recent advances on this area have pointed out that homophily may not be a necessity for GCNs. For deeper analysis of the critical factor affecting the performance of GCNs, we first propose a metric, namely, neighborhood class consistency (NCC), to quantitatively characterize the neighborhood patterns of graph datasets. Experiments surprisingly illustrate that our NCC is a better indicator, in comparison to the widely used homophily metrics, to estimate GCN performance for node classification. Furthermore, we propose a topology augmentation graph convolutional network (TA-GCN) framework under the guidance of the NCC metric, which simultaneously learns an augmented graph topology with higher NCC score and a node classifier based on the augmented graph topology. Extensive experiments on six public benchmarks clearly show that the proposed TA-GCN derives ideal topology with higher NCC score given the original graph topology and raw features, and it achieves excellent performance for semi-supervised node classification in comparison to several state-of-the-art (SOTA) baseline algorithms.
人们普遍认为图卷积网络(GCN)在图节点分类任务中表现出色,并且同质性假设在先前GCN的设计中起着核心作用。然而,该领域最近的一些进展指出,同质性可能并非GCN的必要条件。为了更深入地分析影响GCN性能的关键因素,我们首先提出一种度量标准,即邻域类一致性(NCC),以定量表征图数据集的邻域模式。实验令人惊讶地表明,与广泛使用的同质性度量标准相比,我们的NCC是估计GCN节点分类性能的更好指标。此外,我们在NCC度量标准的指导下提出了一种拓扑增强图卷积网络(TA-GCN)框架,该框架同时学习具有更高NCC分数的增强图拓扑结构以及基于增强图拓扑的节点分类器。在六个公共基准上进行的大量实验清楚地表明,所提出的TA-GCN在给定原始图拓扑和原始特征的情况下能够得出具有更高NCC分数的理想拓扑结构,并且与几种最新的(SOTA)基线算法相比,它在半监督节点分类方面取得了优异的性能。