Suppr超能文献

使用对数欧几里得高斯混合模型(LE-GMMs)和改进的深度森林学习进行癫痫发作自动检测

Automatic Seizure Detection Using Logarithmic Euclidean-Gaussian Mixture Models (LE-GMMs) and Improved Deep Forest Learning.

作者信息

Yuan Shasha, Liu Xiang, Shang Junliang, Liu Jin-Xing, Wang Juan, Zhou Weidong

出版信息

IEEE J Biomed Health Inform. 2023 Mar;27(3):1386-1396. doi: 10.1109/JBHI.2022.3230793. Epub 2023 Mar 7.

Abstract

Automatic seizure detection could facilitate early detection, improve treatment planning, and reduce medical workload. This study describes a novel Logarithmic Euclidean-Gaussian Mixture Models (LE-GMMs) and an improved Deep Forest learning algorithm for epileptic seizure detection. The LE-GMMs could map the Riemannian manifold structure of Gaussian models to linear Euclidean space, which fully exploits the ability of GMMs to distinguish non-seizure and seizure EEG signals. The Multi-Pooling and error Screening Forest (MPSForest) learning method based on Deep Forest uses multi-pooling and out-of-bagging (OOB) error screening to reduce memory load and random tree construction. Firstly, variational modal decomposition (VMD) is applied to decompose electroencephalogram (EEG) signals into five layers, and the first three layers are chosen to construct EEG time-frequency distribution. Then Gaussian Mixture Models are estimated, and the LE-GMMs are constructed to extract valid EEG features. These features are input into the MPSForest model to classify seizure and non-seizure samples. After that, the outputs are subjected to post-processing to get the final seizure detection results, including moving average filtering and the adaptive collar technique. The proposed method achieves average sensitivity of 98.22% and specificity of 98.99% on the UPenn and Mayo Clinic dataset, and for the long-term Freiburg EEG dataset with 21 patients, the sensitivity of 98.47% and specificity of 98.57% are yielded respectively with the false detection rate of 0.24/h. The experimental results show that this proposed method has excellent accuracy in distinguishing non-seizure and seizure EEG signals and holds great potential for clinical research and diagnostics.

摘要

自动癫痫发作检测有助于早期发现、改善治疗方案并减轻医疗工作量。本研究描述了一种用于癫痫发作检测的新型对数欧几里得 - 高斯混合模型(LE - GMMs)和一种改进的深度森林学习算法。LE - GMMs 能够将高斯模型的黎曼流形结构映射到线性欧几里得空间,充分利用了 GMMs 区分非癫痫发作和癫痫发作脑电信号的能力。基于深度森林的多池化和误差筛选森林(MPSForest)学习方法采用多池化和袋外(OOB)误差筛选来减少内存负载和随机树构建。首先,应用变分模态分解(VMD)将脑电图(EEG)信号分解为五层,并选择前三层来构建 EEG 时频分布。然后估计高斯混合模型,并构建 LE - GMMs 以提取有效的 EEG 特征。将这些特征输入到 MPSForest 模型中对癫痫发作和非癫痫发作样本进行分类。之后,对输出进行后处理以获得最终的癫痫发作检测结果,包括移动平均滤波和自适应阈值技术。所提出的方法在宾夕法尼亚大学和梅奥诊所数据集上实现了平均灵敏度为 98.22%,特异性为 98.99%,对于有 21 名患者的长期弗莱堡 EEG 数据集,分别产生了 98.47%的灵敏度和 98.57%的特异性,误检率为 0.24/小时。实验结果表明,该方法在区分非癫痫发作和癫痫发作脑电信号方面具有出色的准确性,在临床研究和诊断中具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验