Wang Xingqi, Li Ming'ai
Faculty of Information Technology, Beijing University of Technology, Beijing 100124, P. R. China.
Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, P. R. China.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Apr 25;41(2):253-261. doi: 10.7507/1001-5515.202307030.
The deep learning-based automatic detection of epilepsy electroencephalogram (EEG), which can avoid the artificial influence, has attracted much attention, and its effectiveness mainly depends on the deep neural network model. In this paper, an attention-based multi-scale residual network (AMSRN) was proposed in consideration of the multiscale, spatio-temporal characteristics of epilepsy EEG and the information flow among channels, and it was combined with multiscale principal component analysis (MSPCA) to realize the automatic epilepsy detection. Firstly, MSPCA was used for noise reduction and feature enhancement of original epilepsy EEG. Then, we designed the structure and parameters of AMSRN. Among them, the attention module (AM), multiscale convolutional module (MCM), spatio-temporal feature extraction module (STFEM) and classification module (CM) were applied successively to signal reexpression with attention weighted mechanism as well as extraction, fusion and classification for multiscale and spatio-temporal features. Based on the Children's Hospital Boston-Massachusetts Institute of Technology CHB-MIT) public dataset, the AMSRN model achieved good results in sensitivity (98.56%), F1 score (98.35%), accuracy (98.41%) and precision (98.43%). The results show that AMSRN can make good use of brain network information flow caused by seizures to enhance the difference among channels, and effectively capture the multiscale and spatio-temporal features of EEG to improve the performance of epilepsy detection.
基于深度学习的癫痫脑电图(EEG)自动检测能够避免人为因素的影响,备受关注,其有效性主要取决于深度神经网络模型。本文考虑到癫痫脑电图的多尺度、时空特征以及通道间的信息流,提出了一种基于注意力的多尺度残差网络(AMSRN),并将其与多尺度主成分分析(MSPCA)相结合以实现癫痫的自动检测。首先,利用MSPCA对原始癫痫脑电图进行降噪和特征增强。然后,设计了AMSRN的结构和参数。其中,注意力模块(AM)、多尺度卷积模块(MCM)、时空特征提取模块(STFEM)和分类模块(CM)依次应用于具有注意力加权机制的信号重新表达以及多尺度和时空特征的提取、融合与分类。基于波士顿儿童医院 - 麻省理工学院(CHB - MIT)公共数据集,AMSRN模型在灵敏度(98.56%)、F1分数(98.35%)、准确率(98.41%)和精确率(98.43%)方面取得了良好的结果。结果表明,AMSRN能够很好地利用癫痫发作引起的脑网络信息流来增强通道间的差异,并有效捕捉脑电图的多尺度和时空特征,从而提高癫痫检测的性能。