Suppr超能文献

基于注意力的多尺度残差网络的自动癫痫检测

[Automatic epilepsy detection with an attention-based multiscale residual network].

作者信息

Wang Xingqi, Li Ming'ai

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, P. R. China.

Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Apr 25;41(2):253-261. doi: 10.7507/1001-5515.202307030.

Abstract

The deep learning-based automatic detection of epilepsy electroencephalogram (EEG), which can avoid the artificial influence, has attracted much attention, and its effectiveness mainly depends on the deep neural network model. In this paper, an attention-based multi-scale residual network (AMSRN) was proposed in consideration of the multiscale, spatio-temporal characteristics of epilepsy EEG and the information flow among channels, and it was combined with multiscale principal component analysis (MSPCA) to realize the automatic epilepsy detection. Firstly, MSPCA was used for noise reduction and feature enhancement of original epilepsy EEG. Then, we designed the structure and parameters of AMSRN. Among them, the attention module (AM), multiscale convolutional module (MCM), spatio-temporal feature extraction module (STFEM) and classification module (CM) were applied successively to signal reexpression with attention weighted mechanism as well as extraction, fusion and classification for multiscale and spatio-temporal features. Based on the Children's Hospital Boston-Massachusetts Institute of Technology CHB-MIT) public dataset, the AMSRN model achieved good results in sensitivity (98.56%), F1 score (98.35%), accuracy (98.41%) and precision (98.43%). The results show that AMSRN can make good use of brain network information flow caused by seizures to enhance the difference among channels, and effectively capture the multiscale and spatio-temporal features of EEG to improve the performance of epilepsy detection.

摘要

基于深度学习的癫痫脑电图(EEG)自动检测能够避免人为因素的影响,备受关注,其有效性主要取决于深度神经网络模型。本文考虑到癫痫脑电图的多尺度、时空特征以及通道间的信息流,提出了一种基于注意力的多尺度残差网络(AMSRN),并将其与多尺度主成分分析(MSPCA)相结合以实现癫痫的自动检测。首先,利用MSPCA对原始癫痫脑电图进行降噪和特征增强。然后,设计了AMSRN的结构和参数。其中,注意力模块(AM)、多尺度卷积模块(MCM)、时空特征提取模块(STFEM)和分类模块(CM)依次应用于具有注意力加权机制的信号重新表达以及多尺度和时空特征的提取、融合与分类。基于波士顿儿童医院 - 麻省理工学院(CHB - MIT)公共数据集,AMSRN模型在灵敏度(98.56%)、F1分数(98.35%)、准确率(98.41%)和精确率(98.43%)方面取得了良好的结果。结果表明,AMSRN能够很好地利用癫痫发作引起的脑网络信息流来增强通道间的差异,并有效捕捉脑电图的多尺度和时空特征,从而提高癫痫检测的性能。

相似文献

1
[Automatic epilepsy detection with an attention-based multiscale residual network].基于注意力的多尺度残差网络的自动癫痫检测
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Apr 25;41(2):253-261. doi: 10.7507/1001-5515.202307030.
6
Epileptic Seizure Prediction Using Spatiotemporal Feature Fusion on EEG.基于 EEG 的时空特征融合的癫痫发作预测。
Int J Neural Syst. 2024 Aug;34(8):2450041. doi: 10.1142/S0129065724500412. Epub 2024 May 22.
9
Automated diagnosis of EEG abnormalities with different classification techniques.采用不同分类技术的 EEG 异常自动化诊断。
Med Biol Eng Comput. 2023 Dec;61(12):3363-3385. doi: 10.1007/s11517-023-02843-w. Epub 2023 Sep 6.

引用本文的文献

本文引用的文献

4
Deep Multi-View Feature Learning for EEG-Based Epileptic Seizure Detection.基于 EEG 的癫痫发作检测的深度多视图特征学习。
IEEE Trans Neural Syst Rehabil Eng. 2019 Oct;27(10):1962-1972. doi: 10.1109/TNSRE.2019.2940485. Epub 2019 Sep 11.
5
Patient-Specific Seizure Detection Using Nonlinear Dynamics and Nullclines.基于非线性动力学和零流线的患者特异性癫痫发作检测。
IEEE J Biomed Health Inform. 2020 Feb;24(2):543-555. doi: 10.1109/JBHI.2019.2906400. Epub 2019 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验