Xiao Yu, Yuan Yuan, Yang Chunhua, Luo Biao, Xu Xiaodong, Dubljevic Stevan
IEEE Trans Cybern. 2024 Feb;54(2):693-705. doi: 10.1109/TCYB.2022.3223168. Epub 2024 Jan 17.
This article investigates the adaptive neural tracking control problem for a class of hyperbolic PDE with boundary actuator dynamics described by a set of nonlinear ordinary differential equations (ODEs). Particularly, the control input appears in the ODE subsystem with unknown nonlinearities requiring to be estimated and compensated, which makes the control task rather difficult. It is the first time to consider tracking control of such a class of systems, rendering our contributions essentially different from the existing literature that merely focus on the stabilization problem. By formulating a virtual exosystem to generate a reference trajectory, we propose a novel design of the adaptive geometric controller for the considered system where neural networks (NNs) are employed to approximately estimate nonlinearities, and finite and infinite-dimensional backstepping techniques are leveraged. Moreover, rigorously theoretical proofs based on the Lyapunov theory are provided to analyze the stability of the closed-loop system. Finally, we illustrate the results through two numerical simulations.
本文研究了一类具有边界执行器动力学的双曲型偏微分方程的自适应神经跟踪控制问题,该边界执行器动力学由一组非线性常微分方程(ODEs)描述。特别地,控制输入出现在具有未知非线性项的ODE子系统中,这些非线性项需要进行估计和补偿,这使得控制任务相当困难。这是首次考虑此类系统的跟踪控制,这使得我们的贡献与仅关注稳定问题的现有文献有本质区别。通过构建一个虚拟外系统来生成参考轨迹,我们为所考虑的系统提出了一种新颖的自适应几何控制器设计,其中采用神经网络(NNs)来近似估计非线性项,并利用有限维和无限维反步法技术。此外,还基于李雅普诺夫理论提供了严格的理论证明,以分析闭环系统的稳定性。最后,我们通过两个数值模拟来说明结果。