Suppr超能文献

用于双曲型偏微分方程鲁棒输出调节的神经算子。

Neural operators for robust output regulation of hyperbolic PDEs.

机构信息

School of Automation, Central South University, Changsha 410083, Hunan, China.

School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410205, Hunan, China.

出版信息

Neural Netw. 2024 Nov;179:106620. doi: 10.1016/j.neunet.2024.106620. Epub 2024 Aug 8.

Abstract

The recently introduced neural operator (NO) has been employed as a gain approximator in the backstepping stabilization control of first-order hyperbolic and parabolic partial differential equation (PDE) systems. Due to the global approximation ability of the DeepONet, the NO provides approximate spatial gain function with arbitrary accuracy. The closed-loop system stability can be ensured by the backstepping controller involving the approximate gain with sufficiently small error. In this paper, the NO theory is leveraged to solve the robust output regulation problem for a class of uncertain hyperbolic PDE systems under the design framework of backstepping-based regulator. The NO is trained offline on a dataset containing a sufficient number of system parameters and corresponding prior solutions of the kernel equation, so as to generate feedback gain for the robust regulator. Once the NO is trained, the kernel equation does not need to be solved ever again, for any new system parameters that do not exceed the range of the training set. Based on the internal model principle, the regulator is inherently robust to a degree of parameter uncertainty and error in approximate gain. Therefore, the tracking error can still converge to 0 if the extended regulator equations are solvable and the parameter uncertainty leads to an asymptotically stable origin. We provide a series of theory proofs and a numerical test under the approximate control and observation gains to demonstrate the robust regulation problem. It is shown that the NO is almost three orders of magnitude faster than PDE solver in generating kernel function, and the loss remains on the order of 10 in the test. This provides an opportunity to use the NO methodology for accelerated gain scheduling regulation for PDEs with time-varying system parameters.

摘要

最近引入的神经算子 (NO) 已被用作一阶双曲型和抛物型偏微分方程 (PDE) 系统的反推稳定控制中的增益逼近器。由于 DeepONet 的全局逼近能力,NO 提供了具有任意精度的近似空间增益函数。通过包含具有足够小误差的近似增益的反推控制器,可以确保闭环系统稳定性。在本文中,利用 NO 理论解决了一类不确定双曲 PDE 系统的鲁棒输出调节问题,设计框架为基于反推的调节器。NO 在包含足够数量的系统参数和核方程的先验解的数据集上离线训练,以便为鲁棒调节器生成反馈增益。一旦 NO 经过训练,就不再需要再次求解核方程,因为对于不超过训练集范围的任何新系统参数都不需要再次求解。基于内模原理,调节器对近似增益中的一定程度的参数不确定性和误差具有固有鲁棒性。因此,如果扩展的调节器方程可解,并且参数不确定性导致渐近稳定的原点,那么跟踪误差仍然可以收敛到 0。我们提供了一系列理论证明和数值测试,以在近似控制和观测增益下证明鲁棒调节问题。结果表明,在生成核函数方面,NO 比 PDE 求解器快三个数量级,并且在测试中损失仍然保持在 10 的量级。这为使用 NO 方法在时变系统参数的 PDE 中进行加速增益调度调节提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验