Suppr超能文献

基于触觉的物体位姿估计学习,用于欠驱动机器人手的手中操作控制。

Learning Haptic-Based Object Pose Estimation for In-Hand Manipulation Control With Underactuated Robotic Hands.

作者信息

Azulay Osher, Ben-David Inbar, Sintov Avishai

出版信息

IEEE Trans Haptics. 2023 Jan-Mar;16(1):73-85. doi: 10.1109/TOH.2022.3232713. Epub 2023 Mar 21.

Abstract

Unlike traditional robotic hands, underactuated compliant hands are challenging to model due to inherent uncertainties. Consequently, pose estimation of a grasped object is usually performed based on visual perception. However, visual perception of the hand and object can be limited in occluded or partly-occluded environments. In this paper, we aim to explore the use of haptics, i.e., kinesthetic and tactile sensing, for pose estimation and in-hand manipulation with underactuated hands. Such haptic approach would mitigate occluded environments where line-of-sight is not always available. We put an emphasis on identifying the feature state representation of the system that does not include vision and can be obtained with simple and low-cost hardware. For tactile sensing, therefore, we propose a low-cost and flexible sensor that is mostly 3D printed along with the finger-tip and can provide implicit contact information. Taking a two-finger underactuated hand as a test-case, we analyze the contribution of kinesthetic and tactile features along with various regression models to the accuracy of the predictions. Furthermore, we propose a Model Predictive Control (MPC) approach which utilizes the pose estimation to manipulate objects to desired positions solely based on haptics. We have conducted a series of experiments that validate the ability to estimate poses of various objects with different geometry, stiffness and texture, and show manipulation to goals in the workspace with relatively high accuracy.

摘要

与传统机器人手不同,欠驱动柔顺手由于存在固有不确定性,其建模具有挑战性。因此,被抓取物体的姿态估计通常基于视觉感知来执行。然而,在遮挡或部分遮挡的环境中,手和物体的视觉感知可能会受到限制。在本文中,我们旨在探索利用触觉,即动觉和触觉传感,来进行欠驱动手的姿态估计和手中操作。这种触觉方法将减轻视线并不总是可用的遮挡环境的影响。我们着重于识别系统的特征状态表示,该表示不包括视觉且可以通过简单且低成本的硬件获得。因此,对于触觉传感,我们提出一种低成本且灵活的传感器,它主要与指尖一起通过3D打印制成,并且能够提供隐式接触信息。以一个双指欠驱动手作为测试案例,我们分析了动觉和触觉特征以及各种回归模型对预测准确性的贡献。此外,我们提出一种模型预测控制(MPC)方法,该方法利用姿态估计仅基于触觉将物体操纵到期望位置。我们进行了一系列实验,验证了估计具有不同几何形状、刚度和纹理的各种物体姿态的能力,并展示了在工作空间中以相对较高的精度操纵到目标位置的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验