Suppr超能文献

正向、负向和受控的硬膜趋化性。

Positive, negative and controlled durotaxis.

作者信息

Sáez P, Venturini C

机构信息

Laboratori de Càlcul Numèric (LaCaN), Universitat Politècnica de Catalunya, Barcelona, Spain.

E.T.S. de Ingeniería de Caminos, Universitat Politècnica de Catalunya, Barcelona, Spain.

出版信息

Soft Matter. 2023 Apr 26;19(16):2993-3001. doi: 10.1039/d2sm01326f.

Abstract

Cell migration is a physical process central to life. Among others, it regulates embryogenesis, tissue regeneration, and tumor growth. Therefore, understanding and controlling cell migration represent fundamental challenges in science. Specifically, the ability of cells to follow stiffness gradients, known as durotaxis, is ubiquitous across most cell types. Even so, certain cells follow positive stiffness gradients while others move along negative gradients. How the physical mechanisms involved in cell migration work to enable a wide range of durotactic responses is still poorly understood. Here, we provide a mechanistic rationale for durotaxis by integrating stochastic clutch models for cell adhesion with an active gel theory of cell migration. We show that positive and negative durotaxis found across cell types are explained by asymmetries in the cell adhesion dynamics. We rationalize durotaxis by asymmetric mechanotransduction in the cell adhesion behavior that further polarizes the intracellular retrograde flow and the protruding velocity at the cell membrane. Our theoretical framework confirms previous experimental observations and explains positive and negative durotaxis. Moreover, we show how durotaxis can be engineered to manipulate cell migration, which has important implications in biology, medicine, and bioengineering.

摘要

细胞迁移是生命中至关重要的一个物理过程。除此之外,它还调控胚胎发育、组织再生和肿瘤生长。因此,理解并控制细胞迁移是科学领域的基本挑战。具体而言,细胞沿着刚度梯度移动的能力,即所谓的趋硬性,在大多数细胞类型中普遍存在。即便如此,某些细胞会沿着正刚度梯度移动,而其他细胞则沿着负刚度梯度移动。细胞迁移所涉及的物理机制如何发挥作用,从而实现广泛的趋硬反应,目前仍知之甚少。在此,我们通过将细胞黏附的随机离合器模型与细胞迁移的活性凝胶理论相结合,为趋硬性提供了一个机械原理。我们表明,不同细胞类型中发现的正向和负向趋硬性可以通过细胞黏附动力学的不对称性来解释。我们通过细胞黏附行为中的不对称机械转导使趋硬性合理化,这种不对称机械转导进一步使细胞内逆行流和细胞膜处的突出速度极化。我们的理论框架证实了先前的实验观察结果,并解释了正向和负向趋硬性。此外,我们展示了如何通过设计趋硬性来操纵细胞迁移,这在生物学、医学和生物工程领域具有重要意义。

相似文献

1
Positive, negative and controlled durotaxis.
Soft Matter. 2023 Apr 26;19(16):2993-3001. doi: 10.1039/d2sm01326f.
2
Durotaxis: The Hard Path from In Vitro to In Vivo.
Dev Cell. 2021 Jan 25;56(2):227-239. doi: 10.1016/j.devcel.2020.11.019. Epub 2020 Dec 7.
3
Durotaxis by Human Cancer Cells.
Biophys J. 2019 Feb 19;116(4):670-683. doi: 10.1016/j.bpj.2019.01.009. Epub 2019 Jan 12.
4
Schwann cell durotaxis can be guided by physiologically relevant stiffness gradients.
Biomater Res. 2018 May 9;22:14. doi: 10.1186/s40824-018-0124-z. eCollection 2018.
5
A multiscale whole-cell theory for mechanosensitive migration on viscoelastic substrates.
Biophys J. 2023 Jan 3;122(1):114-129. doi: 10.1016/j.bpj.2022.11.022. Epub 2022 Dec 8.
7
A hybrid computational model for collective cell durotaxis.
Biomech Model Mechanobiol. 2018 Aug;17(4):1037-1052. doi: 10.1007/s10237-018-1010-2. Epub 2018 Mar 2.
8
Positive and negative durotaxis - mechanisms and emerging concepts.
J Cell Sci. 2024 Apr 15;137(8). doi: 10.1242/jcs.261919. Epub 2024 Apr 22.
9
A minimal mechanics model for mechanosensing of substrate rigidity gradient in durotaxis.
Biomech Model Mechanobiol. 2018 Jun;17(3):915-922. doi: 10.1007/s10237-018-1001-3. Epub 2018 Jan 22.
10
The Golgi microtubules regulate single cell durotaxis.
EMBO Rep. 2021 Mar 3;22(3):e51094. doi: 10.15252/embr.202051094. Epub 2021 Feb 9.

引用本文的文献

1
Competing signaling pathways controls electrotaxis.
iScience. 2025 Apr 2;28(5):112329. doi: 10.1016/j.isci.2025.112329. eCollection 2025 May 16.
2
Visible light-responsive hydrogels for cellular dynamics and spatiotemporal viscoelastic regulation.
Nat Commun. 2025 Feb 4;16(1):1365. doi: 10.1038/s41467-024-54880-0.
3
A multiscale theory for spreading and migration of adhesion-reinforced mesenchymal cells.
J R Soc Interface. 2023 Dec;20(209):20230317. doi: 10.1098/rsif.2023.0317. Epub 2023 Dec 13.
4
Durotaxis and negative durotaxis: where should cells go?
Commun Biol. 2023 Nov 16;6(1):1169. doi: 10.1038/s42003-023-05554-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验