Inorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine.
Institute of Organic Chemistry, Murmanska Str. 4, Kyiv 253660, Ukraine.
Acta Crystallogr C Struct Chem. 2023 May 1;79(Pt 5):177-185. doi: 10.1107/S2053229623002747. Epub 2023 Apr 5.
Developing the structures of organic materials that rely on the hydrogen bonding of multifunctional substrates is often complicated due to a competition between various possible motifs. In this context, the illustrative case of the carbamoylcyanonitrosomethanide anion, [ONC(CN)-C(O)NH], suggests sufficient control over the crystal lattice with a set of supramolecular synthons, which are specific to all the present nitroso, carbamoyl and cyano groups. The structures of the carbamoylcyanonitrosomethanide salts of ethane-1,2-diammonium, CHN·2CHNO, (1), piperazine-1,4-diium, CHN·2CHNO, (2), butane-1,4-diammonium, CHN·2CHNO, (3), and hexane-1,6-diammonium, CHN·2CHNO, (4), reveal two- and three-dimensional hydrogen-bonded frameworks governed by a set of site-selective interactions. The strongest N-H...O hydrogen bonds [N...O = 2.6842 (17)-2.8718 (17) Å, mean 2.776 (2) Å] are associated with the polarized ammonium N-H donors and nitroso O-atom acceptors, which sustain invariant motifs in the form of nitroso/ammonium dimers. Subtle structural changes within this series of compounds concern the rupture of some weaker interactions, i.e. mutual hydrogen bonds of the carbamoyl groups in (1)-(3) [N...O = 2.910 (2)-2.9909 (18) Å; mean 2.950 (2) Å] and carbamoyl/nitrile hydrogen bonds in (1), (2) and (4) [N...N = 2.936 (2)-3.003 (3) Å, mean 2.977 (2) Å], providing a gradual evolution of the hydrogen-bonding pattern. A hierarchy of the synthons involving three different groups could be applicable to supramolecular synthesis with polyfunctional methanide species, suggesting also a degree of control over layered and interpenetrated hydrogen-bonded networks.
开发依赖于多功能底物氢键的有机材料结构通常很复杂,因为各种可能的主题之间存在竞争。在这种情况下,carbamoylcyanonitrosomethanide 阴离子[ONC(CN)-C(O)NH]的说明性案例表明,通过一组特定于所有现有亚硝基、氨甲酰基和氰基的超分子合成子,对晶格具有足够的控制。乙烷-1,2-二铵、CHN·2CHNO、(1)、哌嗪-1,4-二铵、CHN·2CHNO、(2)、丁烷-1,4-二铵、CHN·2CHNO、(3)和己烷-1,6-二铵、CHN·2CHNO、(4)的 carbamoylcyanonitrosomethanide 盐的结构揭示了由一组选择性相互作用控制的二维和三维氢键框架。最强的 N-H…O 氢键[N…O = 2.6842(17)-2.8718(17)Å,平均 2.776(2)Å]与极化的铵 N-H 供体和亚硝基 O-原子受体相关联,它们以亚硝基/铵二聚体的形式维持不变的主题。在该系列化合物中,结构的细微变化涉及到一些较弱相互作用的破坏,即氨甲酰基在(1)-(3)中的相互氢键[N…O = 2.910(2)-2.9909(18)Å;平均 2.950(2)Å]和氨甲酰基/腈氢键在(1)、(2)和(4)中的氢键[N…N = 2.936(2)-3.003(3)Å,平均 2.977(2)Å],提供了氢键模式的逐渐演变。涉及三个不同基团的合成子层次结构可适用于多官能甲叉基物种的超分子合成,这也表明对层状和互穿氢键网络具有一定的控制能力。