Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
Chinese Academy of Inspection & Quarantine Greater Bay Area, Zhongshan, 528400, China.
Anal Bioanal Chem. 2023 Jun;415(14):2705-2713. doi: 10.1007/s00216-023-04669-9. Epub 2023 Apr 5.
This work describes two new colorimetric nanosensors for label-free, equipment-free quantitative detection of nanomolar copper (II) (Cu) and mercury (II) (Hg) ions. Both are based on the analyte-promoted growth of Au nanoparticles (AuNPs) from the reduction of chloroauric acid by 4-morpholineethanesulfonic acid. For the Cu nanosensor, the analyte can accelerate such a redox system to rapidly form a red solution containing dispersed, uniform, spherical AuNPs that is related to these particles' surface plasmon resonance property. For the Hg nanosensor, on the other hand, a blue mixture consisting of aggregated, ill-defined AuNPs with various sizes can be created, showing a significantly enhanced Tyndall effect (TE) signal (in comparison with that produced in the red solution of AuNPs). By using a timer and a smartphone to quantitatively measure the time of producing the red solution and the TE intensity (i.e., the average gray value of the corresponding image) of the blue mixture, respectively, the developed nanosensors are well demonstrated to achieve linear ranges of 6.4 nM to 100 μM and 6.1 nM to 1.56 μM for Cu and Hg, respectively, with detection limits down to 3.5 and 0.1 nM, respectively. The acceptable recovery results obtained from the analysis of the two analytes in the complex real water samples including drinking water, tap water, and pond water ranged from 90.43 to 111.56%.
这项工作描述了两种用于无标记、无设备的纳米级铜(II)(Cu)和汞(II)(Hg)离子定量检测的新比色纳米传感器。两者均基于金纳米粒子(AuNPs)在 4-吗啉乙磺酸还原氯金酸时,分析物促进的生长。对于 Cu 纳米传感器,分析物可以加速这样的氧化还原体系,迅速形成含有分散、均匀、球形 AuNPs 的红色溶液,这与这些颗粒的表面等离子体共振特性有关。另一方面,对于 Hg 纳米传感器,可以形成由大小不一的聚集、不明确 AuNPs 组成的蓝色混合物,显示出显著增强的泰散光(TE)信号(与 AuNPs 的红色溶液相比)。通过使用定时器和智能手机分别定量测量生成红色溶液的时间和蓝色混合物的 TE 强度(即相应图像的平均灰度值),所开发的纳米传感器被证明可以分别实现 6.4 nM 至 100 μM 和 6.1 nM 至 1.56 μM 的线性范围,检测限分别低至 3.5 和 0.1 nM。从包括饮用水、自来水和池塘水在内的复杂实际水样中分析这两种分析物时,获得了可接受的回收率结果,范围为 90.43%至 111.56%。