Suppr超能文献

用于乳腺X光图像分类的卷积特征描述符选择

Convolutional Feature Descriptor Selection for Mammogram Classification.

作者信息

Li Dong, Zhang Lei, Zhang Jianwei, Xie Xingyu

出版信息

IEEE J Biomed Health Inform. 2023 Mar;27(3):1467-1476. doi: 10.1109/JBHI.2022.3233535. Epub 2023 Mar 7.

Abstract

Breast cancer was the most commonly diagnosed cancer among women worldwide in 2020. Recently, several deep learning-based classification approaches have been proposed to screen breast cancer in mammograms. However, most of these approaches require additional detection or segmentation annotations. Meanwhile, some other image-level label-based methods often pay insufficient attention to lesion areas, which are critical for diagnosis. This study designs a novel deep-learning method for automatically diagnosing breast cancer in mammography, which focuses on the local lesion areas and only utilizes image-level classification labels. In this study, we propose to select discriminative feature descriptors from feature maps instead of identifying lesion areas using precise annotations. And we design a novel adaptive convolutional feature descriptor selection (AFDS) structure based on the distribution of the deep activation map. Specifically, we adopt the triangle threshold strategy to calculate a specific threshold for guiding the activation map to determine which feature descriptors (local areas) are discriminative. Ablation experiments and visualization analysis indicate that the AFDS structure makes the model easier to learn the difference between malignant and benign/normal lesions. Furthermore, since the AFDS structure can be regarded as a highly efficient pooling structure, it can be easily plugged into most existing convolutional neural networks with negligible effort and time consumption. Experimental results on two publicly available INbreast and CBIS-DDSM datasets indicate that the proposed method performs satisfactorily compared with state-of-the-art methods.

摘要

乳腺癌是2020年全球女性中最常被诊断出的癌症。最近,已经提出了几种基于深度学习的分类方法来在乳房X光片中筛查乳腺癌。然而,这些方法中的大多数都需要额外的检测或分割标注。同时,一些其他基于图像级标签的方法往往对病变区域关注不足,而病变区域对诊断至关重要。本研究设计了一种用于在乳房X光片中自动诊断乳腺癌的新型深度学习方法,该方法专注于局部病变区域且仅利用图像级分类标签。在本研究中,我们提议从特征图中选择有区分力的特征描述符,而不是使用精确标注来识别病变区域。并且我们基于深度激活图的分布设计了一种新型自适应卷积特征描述符选择(AFDS)结构。具体来说,我们采用三角阈值策略来计算一个特定阈值,以指导激活图确定哪些特征描述符(局部区域)具有区分力。消融实验和可视化分析表明,AFDS结构使模型更容易学习恶性病变与良性/正常病变之间的差异。此外,由于AFDS结构可以被视为一种高效的池化结构,它可以轻松地以可忽略不计的工作量和时间消耗插入到大多数现有的卷积神经网络中。在两个公开可用的INbreast和CBIS-DDSM数据集上的实验结果表明,与现有最先进的方法相比,所提出的方法表现令人满意。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验