Suppr超能文献

使用自适应量子启发式特征选择优化乳腺癌诊断

Optimized breast cancer diagnosis using self-adaptive quantum metaheuristic feature selection.

作者信息

Shukla Alok Kumar, Dwivedi Shubhra, Singh Deepak, Singh Sunil Kumar, Tripathi Diwakar, Dewangan Ram Kishan

机构信息

Thapar Institute of Engineering and Technology, Patiala, Punjab, India.

National Institute of Technology, Raipur, India.

出版信息

Sci Rep. 2025 Jun 6;15(1):19900. doi: 10.1038/s41598-025-05014-z.

Abstract

Breast cancer is a leading cause of mortality among women and is increasing rapidly around the world. For early diagnosis of breast cancer, precise classification, and finding the best subset for cancer identification, evolutionary-based feature selection methods play a vital role in effective treatment. Previous studies have shown that existing evolutionary methods are complicated in correctly differentiating BC disease subtypes with high consistency, which seriously affects the performance of classification methods. To prevent diagnostic errors with hostile implications for patient health, in this study, we develop a new evolutionary method called SeQTLBOGA that incorporates the learner quantization before the search capability of the feature space to prevent premature falls into the local optima. In the SeQTLBOGA algorithm, quantum theory and a self-adaptive mechanism are employed to update the Teaching Learning-based Optimization (TLBO) rule to enhance convergence search capabilities. Most importantly, a self-adaptive genetic algorithm (GA) is also incorporated into TLBO to tradeoff between exploration and exploitation to handle slow convergence and exploitation competence, and simultaneously optimizing parameters of support vector machines (SVM) and the best features subset is our primary objective. Comparative results based on optimal computing time and performance are also offered to empirically analyze the traditional algorithms. Therefore, this paper aims to evaluate the most recent quantum-inspired metaheuristic algorithms in WBCD and WDBC databases, emphasizing their advantages and disadvantages.

摘要

乳腺癌是女性死亡的主要原因之一,且在全球范围内迅速增加。对于乳腺癌的早期诊断、精确分类以及寻找用于癌症识别的最佳子集而言,基于进化的特征选择方法在有效治疗中起着至关重要的作用。先前的研究表明,现有的进化方法在以高一致性正确区分乳腺癌疾病亚型方面很复杂,这严重影响了分类方法的性能。为防止对患者健康产生不利影响的诊断错误,在本研究中,我们开发了一种名为SeQTLBOGA的新进化方法,该方法在特征空间的搜索能力之前纳入学习者量化,以防止过早陷入局部最优。在SeQTLBOGA算法中,采用量子理论和自适应机制来更新基于教学学习的优化(TLBO)规则,以增强收敛搜索能力。最重要的是,一种自适应遗传算法(GA)也被纳入TLBO,以在探索和利用之间进行权衡,以处理收敛缓慢和利用能力问题,同时优化支持向量机(SVM)的参数,并且找到最佳特征子集是我们的主要目标。基于最优计算时间和性能的比较结果也被提供,以实证分析传统算法。因此,本文旨在评估WBCD和WDBC数据库中最新的量子启发式元启发式算法,强调它们的优缺点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbb7/12144299/4d07bf091f8a/41598_2025_5014_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验