Suppr超能文献

用于分子功能分类的具有解缠表示的分层图胶囊网络。

Hierarchical Graph Capsule Networks for Molecular Function Classification With Disentangled Representations.

作者信息

Zhang Jing, Lei Yu, Wang Yuxiang, Zhou Cangqi, Sheng Victor S

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2024 Jul-Aug;21(4):1072-1082. doi: 10.1109/TCBB.2022.3233354. Epub 2024 Aug 8.

Abstract

In biochemistry, graph structures have been widely used for modeling compounds, proteins, functional interactions, etc. A common task that divides these graphs into different categories, known as graph classification, highly relies on the quality of the representations of graphs. With the advance in graph neural networks, message-passing-based methods are adopted to iteratively aggregate neighborhood information for better graph representations. These methods, though powerful, still suffer from some shortcomings. The first challenge is that pooling-based methods in graph neural networks may sometimes ignore the part-whole hierarchies naturally existing in graph structures. These part-whole relationships are usually valuable for many molecular function prediction tasks. The second challenge is that most existing methods do not take the heterogeneity embedded in graph representations into consideration. Disentangling the heterogeneity will increase the performance and interpretability of models. This paper proposes a graph capsule network for graph classification tasks with disentangled feature representations learned automatically by well-designed algorithms. This method is capable of, on the one hand, decomposing heterogeneous representations to more fine-grained elements, whilst on the other hand, capturing part-whole relationships using capsules. Extensive experiments performed on several public-available biochemistry datasets demonstrated the effectiveness of the proposed method, compared with nine state-of-the-art graph learning methods.

摘要

在生物化学中,图结构已被广泛用于对化合物、蛋白质、功能相互作用等进行建模。一项将这些图分为不同类别的常见任务,即图分类,高度依赖于图表示的质量。随着图神经网络的发展,基于消息传递的方法被用于迭代聚合邻域信息,以获得更好的图表示。这些方法虽然强大,但仍存在一些缺点。第一个挑战是,图神经网络中基于池化的方法有时可能会忽略图结构中自然存在的部分-整体层次结构。这些部分-整体关系对于许多分子功能预测任务通常很有价值。第二个挑战是大多数现有方法没有考虑图表示中嵌入的异质性。解开异质性将提高模型的性能和可解释性。本文提出了一种用于图分类任务的图胶囊网络,通过精心设计的算法自动学习解缠特征表示。该方法一方面能够将异构表示分解为更细粒度的元素,另一方面能够使用胶囊捕捉部分-整体关系。与九种最新图学习方法相比,在几个公开可用的生物化学数据集上进行的大量实验证明了所提方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验