Suppr超能文献

基于增强型图神经网络的药物毒性预测模型

Drug toxicity prediction model based on enhanced graph neural network.

作者信息

Monem Samar, Abdel-Hamid Alaa H, Hassanien Aboul Ella

机构信息

Mathematics and Computer Science Department, Faculty of Science, Beni-Suef University, 62521, Beni-Suef, Egypt.

Faculty of Computer and AI, Cairo University, Egypt.

出版信息

Comput Biol Med. 2025 Feb;185:109614. doi: 10.1016/j.compbiomed.2024.109614. Epub 2024 Dec 24.

Abstract

Prediction of drug toxicity remains a significant challenge and an essential process in drug discovery. Traditional machine learning algorithms struggle to capture the full scope of molecular structure features, limiting their effectiveness in toxicity prediction. Graph Neural Network offers a promising solution by effectively extracting drug features from their molecular graphs. However, existing graph learning algorithms fail to account for the interaction features between graph nodes and the indirect edges connecting them. This paper proposes an enhanced graph Neural Network algorithm that employs multi-view features for each node, capturing the feature interactions between each node and its neighbors. Additionally, the adjacency matrix is preprocessed to handle indirect edge interactions. A pooling technique is then applied to aggregate node features, followed by normalization and an activation layer. To further enhance the proposed algorithm, multi-scale attention is applied to learn graph features at different scales, utilizing weights to understand intricate relationships among node feature vectors. The proposed algorithm is evaluated using eight toxicity datasets, covering binary classification, multi-task multi-class, and regression tasks. For binary classification, the Tox21, AMES, Skin reaction, Carcinogens, and DILI datasets are tested. For multi-task multi-class, the ToxCast dataset is applied, and for regression, the LD50 and hREG datasets are tested. The proposed algorithm is compared with four well-known algorithms including Graph Convolution Network, Graph Attention Network, Graph Isomorphism Network, Enhanced Graph Isomorphism Network, and Graph Total Variation. For the classification task, the proposed algorithm achieves ROC-AUC scores of 0.752 for Tox21, 0.775 for AMES, 0.707 for Skin reaction, 0.845 for Carcinogens, 0.92 for DILI, and 0.691 for the ToxCast dataset. For the regression task, the algorithm attains mean square errors of 0.896 for the LD50 dataset and 0.766 for the hREG dataset. These results demonstrate an improvement over the compared algorithms across all evaluated datasets.

摘要

药物毒性预测仍然是一项重大挑战,也是药物研发中的一个重要过程。传统的机器学习算法难以捕捉分子结构特征的全貌,限制了它们在毒性预测方面的有效性。图神经网络通过有效地从分子图中提取药物特征,提供了一个有前景的解决方案。然而,现有的图学习算法没有考虑图节点之间的相互作用特征以及连接它们的间接边。本文提出了一种增强的图神经网络算法,该算法为每个节点采用多视图特征,捕捉每个节点与其邻居之间的特征相互作用。此外,对邻接矩阵进行预处理以处理间接边相互作用。然后应用池化技术聚合节点特征,接着进行归一化和激活层处理。为了进一步增强所提出的算法,应用多尺度注意力来学习不同尺度的图特征,利用权重来理解节点特征向量之间的复杂关系。使用八个毒性数据集对所提出的算法进行评估,这些数据集涵盖二元分类、多任务多分类和回归任务。对于二元分类,测试了Tox21、AMES、皮肤反应、致癌物和药物性肝损伤数据集。对于多任务多分类,应用了ToxCast数据集,对于回归,测试了LD50和hREG数据集。将所提出的算法与四种著名算法进行比较,包括图卷积网络、图注意力网络、图同构网络、增强图同构网络和图全变差。对于分类任务,所提出的算法在Tox21数据集上的ROC-AUC得分为0.752,在AMES数据集上为0.775,在皮肤反应数据集上为0.707,在致癌物数据集上为0.845,在药物性肝损伤数据集上为0.92,在ToxCast数据集上为0.691。对于回归任务,该算法在LD50数据集上的均方误差为0.896,在hREG数据集上为0.766。这些结果表明,在所评估的所有数据集中,与比较算法相比有了改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验