Suppr超能文献

学习通用物体密集3D形状对应关系的隐函数

Learning Implicit Functions for Dense 3D Shape Correspondence of Generic Objects.

作者信息

Liu Feng, Liu Xiaoming

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Mar;46(3):1852-1867. doi: 10.1109/TPAMI.2022.3233431. Epub 2024 Feb 6.

Abstract

The objective of this paper is to learn dense 3D shape correspondence for topology-varying generic objects in an unsupervised manner. Conventional implicit functions estimate the occupancy of a 3D point given a shape latent code. Instead, our novel implicit function produces a probabilistic embedding to represent each 3D point in a part embedding space. Assuming the corresponding points are similar in the embedding space, we implement dense correspondence through an inverse function mapping from the part embedding vector to a corresponded 3D point. Both functions are jointly learned with several effective and uncertainty-aware loss functions to realize our assumption, together with the encoder generating the shape latent code. During inference, if a user selects an arbitrary point on the source shape, our algorithm can automatically generate a confidence score indicating whether there is a correspondence on the target shape, as well as the corresponding semantic point if there is one. Such a mechanism inherently benefits man-made objects with different part constitutions. The effectiveness of our approach is demonstrated through unsupervised 3D semantic correspondence and shape segmentation.

摘要

本文的目标是以无监督方式学习拓扑变化的通用物体的密集3D形状对应关系。传统的隐函数在给定形状潜在编码的情况下估计3D点的占用情况。相反,我们新颖的隐函数生成概率嵌入,以在部分嵌入空间中表示每个3D点。假设对应点在嵌入空间中相似,我们通过从部分嵌入向量到对应3D点的逆函数映射来实现密集对应。这两个函数与几个有效且考虑不确定性的损失函数一起联合学习,以实现我们的假设,同时编码器生成形状潜在编码。在推理过程中,如果用户在源形状上选择任意一点,我们的算法可以自动生成一个置信度分数,指示目标形状上是否存在对应关系,以及如果存在对应关系则生成相应的语义点。这种机制本质上有利于具有不同部分构成的人造物体。我们方法的有效性通过无监督3D语义对应和形状分割得到了证明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验