Suppr超能文献

通过局部线性变换学习用于无监督形状对应性的规范嵌入。

Learning Canonical Embeddings for Unsupervised Shape Correspondence With Locally Linear Transformations.

作者信息

He Pan, Emami Patrick, Ranka Sanjay, Rangarajan Anand

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):14872-14887. doi: 10.1109/TPAMI.2023.3307592. Epub 2023 Nov 3.

Abstract

We present a new approach to unsupervised shape correspondence learning between pairs of point clouds. We make the first attempt to adapt the classical locally linear embedding algorithm (LLE)-originally designed for nonlinear dimensionality reduction-for shape correspondence. The key idea is to find dense correspondences between shapes by first obtaining high-dimensional neighborhood-preserving embeddings of low-dimensional point clouds and subsequently aligning the source and target embeddings using locally linear transformations. We demonstrate that learning the embedding using a new LLE-inspired point cloud reconstruction objective results in accurate shape correspondences. More specifically, the approach comprises an end-to-end learnable framework of extracting high-dimensional neighborhood-preserving embeddings, estimating locally linear transformations in the embedding space, and reconstructing shapes via divergence measure-based alignment of probability density functions built over reconstructed and target shapes. Our approach enforces embeddings of shapes in correspondence to lie in the same universal/canonical embedding space, which eventually helps regularize the learning process and leads to a simple nearest neighbors approach between shape embeddings for finding reliable correspondences. Comprehensive experiments show that the new method makes noticeable improvements over state-of-the-art approaches on standard shape correspondence benchmark datasets covering both human and nonhuman shapes.

摘要

我们提出了一种新方法,用于在点云对之间进行无监督形状对应学习。我们首次尝试将最初为非线性降维设计的经典局部线性嵌入算法(LLE)应用于形状对应。关键思想是,先通过获取低维点云的高维邻域保持嵌入,然后使用局部线性变换对齐源嵌入和目标嵌入,从而找到形状之间的密集对应。我们证明,使用受LLE启发的新点云重建目标来学习嵌入会得到精确的形状对应。更具体地说,该方法包括一个端到端可学习框架,用于提取高维邻域保持嵌入、估计嵌入空间中的局部线性变换,以及通过基于散度度量的概率密度函数对齐来重建形状,其中概率密度函数基于重建形状和目标形状构建。我们的方法强制对应形状的嵌入位于相同的通用/规范嵌入空间中,这最终有助于规范学习过程,并导致在形状嵌入之间采用简单的最近邻方法来找到可靠的对应。综合实验表明,在涵盖人类和非人类形状的标准形状对应基准数据集上,新方法相对于现有方法有显著改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验