Toyota Central R&D Laboratories., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.
VASP Software GmbH, Sensengasse 8, 1090 Vienna, Austria.
J Phys Chem Lett. 2023 Apr 13;14(14):3581-3588. doi: 10.1021/acs.jpclett.3c00293. Epub 2023 Apr 5.
Polymers are a class of materials that are highly challenging to deal with using first-principles methods. Here, we present an application of machine-learned interatomic potentials to predict structural and dynamical properties of dry and hydrated perfluorinated ionomers. An improved active-learning algorithm using a small number of descriptors allows to efficiently construct an accurate and transferable model for this multielemental amorphous polymer. Molecular dynamics simulations accelerated by the machine-learned potentials accurately reproduce the heterogeneous hydrophilic and hydrophobic domains formed in this material as well as proton and water diffusion coefficients under a variety of humidity conditions. Our results reveal pronounced contributions of Grotthuss chains consisting of two to three water molecules to the high proton mobility under strongly humidified conditions.
高分子材料是一类用第一性原理方法处理极具挑战性的材料。在这里,我们将机器学习原子间势应用于预测干燥和水合全氟离子聚合物的结构和动力学性质。一种使用少量描述符的改进的主动学习算法,可以有效地为这种多元素无定形聚合物构建一个准确和可转移的模型。通过机器学习势加速的分子动力学模拟准确地再现了该材料中形成的异质亲水性和疏水性区域,以及在各种湿度条件下质子和水的扩散系数。我们的结果表明,在强加湿条件下,由两个到三个水分子组成的质子跳跃通道对高质子迁移率有显著贡献。