Jinnouchi Ryosuke, Karsai Ferenc, Kresse Georg
Toyota Central R&D Labs., Inc. Yokomichi 41-1 Nagakute Aichi Japan
VASP Software GmbH Berggasse 21 A-1090 Vienna Austria.
Chem Sci. 2024 Dec 23;16(5):2335-2343. doi: 10.1039/d4sc03378g. eCollection 2025 Jan 29.
Constructing a self-consistent first-principles framework that accurately predicts the properties of electron transfer reactions through finite-temperature molecular dynamics simulations is a dream of theoretical electrochemists and physical chemists. Yet, predicting even the absolute standard hydrogen electrode potential, the most fundamental reference for electrode potentials, proves to be extremely challenging. Here, we show that a hybrid functional incorporating 25% exact exchange enables quantitative predictions when statistically accurate phase-space sampling is achieved thermodynamic integrations and thermodynamic perturbation theory calculations, utilizing machine-learned force fields and Δ-machine learning models. The application to seven redox couples, including molecules and transition metal ions, demonstrates that the hybrid functional can predict redox potentials across a wide range of potentials with an average error of 140 mV.
构建一个自洽的第一性原理框架,通过有限温度分子动力学模拟准确预测电子转移反应的性质,是理论电化学家和物理化学家的梦想。然而,即使是预测绝对标准氢电极电位(电极电位最基本的参考)也被证明极具挑战性。在这里,我们表明,当通过热力学积分和热力学微扰理论计算,利用机器学习力场和Δ机器学习模型实现统计上准确的相空间采样时,包含25%精确交换的混合泛函能够进行定量预测。对包括分子和过渡金属离子在内的七个氧化还原对的应用表明,该混合泛函可以预测广泛电位范围内的氧化还原电位,平均误差为140 mV。