Suppr超能文献

ES-GNN:通过边分割将图神经网络推广到超越同质性的情况。

ES-GNN: Generalizing Graph Neural Networks Beyond Homophily With Edge Splitting.

作者信息

Guo Jingwei, Huang Kaizhu, Zhang Rui, Yi Xinping

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):11345-11360. doi: 10.1109/TPAMI.2024.3459932. Epub 2024 Nov 6.

Abstract

While Graph Neural Networks (GNNs) have achieved enormous success in multiple graph analytical tasks, modern variants mostly rely on the strong inductive bias of homophily. However, real-world networks typically exhibit both homophilic and heterophilic linking patterns, wherein adjacent nodes may share dissimilar attributes and distinct labels. Therefore, GNNs smoothing node proximity holistically may aggregate both task-relevant and irrelevant (even harmful) information, limiting their ability to generalize to heterophilic graphs and potentially causing non-robustness. In this work, we propose a novel Edge Splitting GNN (ES-GNN) framework to adaptively distinguish between graph edges either relevant or irrelevant to learning tasks. This essentially transfers the original graph into two subgraphs with the same node set but complementary edge sets dynamically. Given that, information propagation separately on these subgraphs and edge splitting are alternatively conducted, thus disentangling the task-relevant and irrelevant features. Theoretically, we show that our ES-GNN can be regarded as a solution to a disentangled graph denoising problem, which further illustrates our motivations and interprets the improved generalization beyond homophily. Extensive experiments over 11 benchmark and 1 synthetic datasets not only demonstrate the effective performance of ES-GNN but also highlight its robustness to adversarial graphs and mitigation of the over-smoothing problem.

摘要

虽然图神经网络(GNN)在多个图分析任务中取得了巨大成功,但现代变体大多依赖于同质性的强归纳偏差。然而,现实世界中的网络通常同时呈现出同质性和异质性的链接模式,其中相邻节点可能具有不同的属性和不同的标签。因此,GNN整体平滑节点接近度可能会聚合与任务相关和不相关(甚至有害)的信息,限制了它们对异质图的泛化能力,并可能导致不稳健性。在这项工作中,我们提出了一种新颖的边分割GNN(ES-GNN)框架,以自适应地区分与学习任务相关或不相关的图边。这本质上是将原始图动态地转换为两个具有相同节点集但互补边集的子图。鉴于此,分别在这些子图上进行信息传播和边分割,从而解开与任务相关和不相关的特征。从理论上讲,我们表明我们的ES-GNN可以被视为一个解开纠缠的图去噪问题的解决方案,这进一步说明了我们的动机,并解释了超越同质性的改进泛化能力。在11个基准数据集和1个合成数据集上进行的广泛实验不仅证明了ES-GNN的有效性能,还突出了其对对抗性图的鲁棒性以及对过平滑问题的缓解。

相似文献

1
ES-GNN: Generalizing Graph Neural Networks Beyond Homophily With Edge Splitting.ES-GNN:通过边分割将图神经网络推广到超越同质性的情况。
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):11345-11360. doi: 10.1109/TPAMI.2024.3459932. Epub 2024 Nov 6.
3
6
Generalized heterophily graph data augmentation for node classification.广义异配图数据增强的节点分类。
Neural Netw. 2023 Nov;168:339-349. doi: 10.1016/j.neunet.2023.09.021. Epub 2023 Sep 19.
7
SP-GNN: Learning structure and position information from graphs.SP-GNN:从图中学习结构和位置信息。
Neural Netw. 2023 Apr;161:505-514. doi: 10.1016/j.neunet.2023.01.051. Epub 2023 Feb 4.
8
muxGNN: Multiplex Graph Neural Network for Heterogeneous Graphs.muxGNN:用于异构图的多路复用图神经网络。
IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):11067-11078. doi: 10.1109/TPAMI.2023.3263079. Epub 2023 Aug 7.
10
Domain-Adaptive Graph Attention-Supervised Network for Cross-Network Edge Classification.用于跨网络边缘分类的域自适应图注意力监督网络
IEEE Trans Neural Netw Learn Syst. 2024 Dec;35(12):17842-17855. doi: 10.1109/TNNLS.2023.3309632. Epub 2024 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验