Suppr超能文献

一种用于多步概率风力发电预测的随机递归编码器-解码器网络。

A Stochastic Recurrent Encoder Decoder Network for Multistep Probabilistic Wind Power Predictions.

作者信息

Zheng Zhong, Zhang Zijun

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):9565-9578. doi: 10.1109/TNNLS.2023.3234130. Epub 2024 Jul 8.

Abstract

In this article, a stochastic recurrent encoder decoder neural network (SREDNN), which considers latent random variables in its recurrent structures, is developed for the first time for the generative multistep probabilistic wind power predictions (MPWPPs). The SREDNN enables the stochastic recurrent model under the encoder-decoder framework to engage exogenous covariates to produce better MPWPP. The SREDNN consists of five components, the prior network, the inference network, the generative network, the encoder recurrent network, and the decoder recurrent network. The SREDNN is equipped with two critical advantages compared with conventional RNN-based methods. First, the integration over the latent random variable builds an infinite Gaussian mixture model (IGMM) as the observation model, which drastically increases the expressiveness of the wind power distribution. Secondly, hidden states of the SREDNN are updated in a stochastic way, which builds an infinite mixture of the IGMM for describing the ultimate wind power distribution and enables the SREDNN to model complex patterns across wind speed and wind power sequences. Computational experiments are conducted on a dataset of a commercial wind farm having 25 wind turbines (WTs) and two publicly assessable WT datasets to verify the advantages and effectiveness of the SREDNN for MPWPP. Experimental results show that the SREDNN achieves a lower negative form of the continuously ranked probability score (CRPS*) as well as a superior sharpness and comparable reliability of prediction intervals by comparing against considered benchmarking models. Results also show the clear benefit gained from considering latent random variables in SREDNN.

摘要

在本文中,首次开发了一种随机递归编码器-解码器神经网络(SREDNN),该网络在其递归结构中考虑了潜在随机变量,用于生成式多步概率风电功率预测(MPWPP)。SREDNN使编码器-解码器框架下的随机递归模型能够利用外部协变量来产生更好的MPWPP。SREDNN由五个部分组成,即先验网络、推理网络、生成网络、编码器递归网络和解码器递归网络。与传统的基于递归神经网络(RNN)的方法相比,SREDNN具有两个关键优势。首先,对潜在随机变量的积分构建了一个无限高斯混合模型(IGMM)作为观测模型,这极大地提高了风电功率分布的表现力。其次,SREDNN的隐藏状态以随机方式更新,这构建了一个用于描述最终风电功率分布的IGMM无限混合模型,并使SREDNN能够对风速和风电功率序列中的复杂模式进行建模。在一个拥有25台风力发电机组(WT)的商业风电场数据集以及两个可公开评估的WT数据集上进行了计算实验,以验证SREDNN在MPWPP方面的优势和有效性。实验结果表明,与所考虑的基准模型相比,SREDNN实现了更低的连续排序概率得分(CRPS*)的负形式,以及预测区间的更高清晰度和相当的可靠性。结果还表明了在SREDNN中考虑潜在随机变量所带来的明显益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验