Suppr超能文献

基于 BGCP 的交通数据插补和国家干线公路事故检测应用

BGCP-based traffic data imputation and accident detection applications for the national trunk highway.

机构信息

Beijing Key Laboratory of Traffic Engineering and the College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China.

Beijing Key Laboratory of Traffic Engineering and the College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China.

出版信息

Accid Anal Prev. 2023 Jun;186:107051. doi: 10.1016/j.aap.2023.107051. Epub 2023 Apr 3.

Abstract

Facing the currently large quantity of intelligent transportation data, missing ones is often inevitable. Some previous works have shown the advantages of tensor decomposition-based approaches in solving multi-dimensional data imputation problems. However, a research gap still exists in examining the effect of applying these methods on imputation performance and their application to accident detection. Thus, referring to a two-month spatiotemporal traffic speed dataset, collected on the national trunk highway in Shandong, China, this paper employs the Bayesian Gaussian CANDECOMP/PARAFAC (BGCP) to impute missing speed data in different missing rates and missing scenarios. Moreover, the dataset is built while considering both the temporal and the road functions. Applying the generated results of data imputation in accident detection is also of the main targets of this work. Thus, while combining multiple sources of data, such as traffic operation status and weather, eXtreme Gradient Boosting (XGBoost) is deployed to build accident detection models. The generated results show that the BGCP model can produce accurate imputations even under temporally correlated data corruption. Added to that, it is also suggested that, when there are continuous periods of missing speed data (missing rate greater than 10%), pre-processing of data imputation is imperative to maintain the accuracy of accident detection. Thus, the objective of this work is to provide insights into traffic management and academics when performing spatiotemporal data imputation tasks.

摘要

面对当前大量的智能交通数据,数据缺失往往是不可避免的。一些先前的工作已经表明,基于张量分解的方法在解决多维数据插补问题方面具有优势。然而,在考察这些方法对插补性能的影响及其在事故检测中的应用方面,仍然存在研究空白。因此,本文参考了在中国山东的国家干线公路上采集的为期两个月的时空交通速度数据集,使用贝叶斯高斯 CANDECOMP/PARAFAC(BGCP)在不同缺失率和缺失情况下对缺失的速度数据进行插补。此外,该数据集的构建同时考虑了时间和道路功能。将数据插补的生成结果应用于事故检测也是这项工作的主要目标之一。因此,在结合交通运行状态和天气等多种数据源的同时,应用极端梯度提升(XGBoost)来构建事故检测模型。生成的结果表明,即使在时间相关的数据损坏情况下,BGCP 模型也可以产生准确的插补结果。此外,当连续出现大量速度数据缺失(缺失率大于 10%)时,必须对数据插补进行预处理,以保持事故检测的准确性。因此,这项工作的目的是为进行时空数据插补任务时的交通管理和学术界提供一些见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验