Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China.
Nature. 2023 Apr;616(7955):73-76. doi: 10.1038/s41586-023-05815-0. Epub 2023 Apr 5.
With strong reducibility and high redox potential, the hydride ion (H) is a reactive hydrogen species and an energy carrier. Materials that conduct pure H at ambient conditions will be enablers of advanced clean energy storage and electrochemical conversion technologies. However, rare earth trihydrides, known for fast H migration, also exhibit detrimental electronic conductivity. Here we show that by creating nanosized grains and defects in the lattice, the electronic conductivity of LaH can be suppressed by more than five orders of magnitude. This transforms LaH to a superionic conductor at -40 °C with a record high H conductivity of 1.0 × 10 S cm and a low diffusion barrier of 0.12 eV. A room-temperature all-solid-state hydride cell is demonstrated.
具有强还原性和高氧化还原电位的氢化物离子 (H) 是一种活性氢物种和能量载体。在环境条件下传导纯 H 的材料将成为先进清洁能源存储和电化学转化技术的推动者。然而,众所周知,稀土三氢化物具有快速的 H 迁移能力,但也表现出有害的电子导电性。在这里,我们表明通过在晶格中制造纳米晶粒和缺陷,可以将 LaH 的电子电导率抑制超过五个数量级。这将 LaH 转变为具有 1.0×10 S cm 的创纪录高 H 电导率和 0.12 eV 的低扩散势垒的超离子导体。演示了一种室温全固态氢化物电池。