Guan Runnan, Sheng Li, Li Changqing, Gu Jiwon, Seo Jeong-Min, Jang Boo-Jae, Kim Seung-Hyeon, Kim Jiwon, Lim Hankwon, Li Qunxiang, Baek Jong-Beom
Department of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, China.
Nat Nanotechnol. 2025 Jun 5. doi: 10.1038/s41565-025-01949-6.
Developing a direct carbon dioxide (CO) capture and methanation method is one of the most important challenges to achieving carbon neutrality. However, converting CO into methane (CH) kinetically requires the activation of stable CO at high temperatures (300-500 °C), while the CO-to-CH conversion thermodynamically favours low temperatures. Here we report an efficient mechanochemical CO capture and conversion under mild conditions (65 °C). Using commercial zirconium oxide (ZrO) and nickel catalysts, the mechanochemical CO capture capacity was 75-fold higher than the conventional thermochemical process. The mechanochemical CO conversion reached a nearly quantitative CO conversion (99.2%) with CH selectivity (98.8%). We determined that repeatedly induced abundant oxygen vacancies on ZrO by dynamic mechanical actions are responsible for efficient CO capture and, thus, subsequently spontaneous methanation.
开发一种直接二氧化碳(CO₂)捕获和甲烷化方法是实现碳中和最重要的挑战之一。然而,将CO₂动力学转化为甲烷(CH₄)需要在高温(300-500°C)下激活稳定的CO₂,而CO₂到CH₄的转化在热力学上有利于低温。在此,我们报告了在温和条件(65°C)下一种高效的机械化学CO₂捕获和转化方法。使用商业氧化锆(ZrO₂)和镍催化剂,机械化学CO₂捕获能力比传统热化学过程高75倍。机械化学CO₂转化实现了近乎定量的CO₂转化率(99.2%)和CH₄选择性(98.8%)。我们确定,通过动态机械作用在ZrO₂上反复诱导产生的大量氧空位是高效CO₂捕获以及随后自发甲烷化的原因。