Suppr超能文献

用于构建基于DNA的数据存储稳健编码的进化方法。

Evolutionary approach to construct robust codes for DNA-based data storage.

作者信息

Rasool Abdur, Jiang Qingshan, Wang Yang, Huang Xiaoluo, Qu Qiang, Dai Junbiao

机构信息

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Front Genet. 2023 Mar 20;14:1158337. doi: 10.3389/fgene.2023.1158337. eCollection 2023.

Abstract

DNA is a practical storage medium with high density, durability, and capacity to accommodate exponentially growing data volumes. A DNA sequence structure is a biocomputing problem that requires satisfying bioconstraints to design robust sequences. Existing evolutionary approaches to DNA sequences result in errors during the encoding process that reduces the lower bounds of DNA coding sets used for molecular hybridization. Additionally, the disordered DNA strand forms a secondary structure, which is susceptible to errors during decoding. This paper proposes a computational evolutionary approach based on a synergistic moth-flame optimizer by Levy flight and opposition-based learning mutation strategies to optimize these problems by constructing reverse-complement constraints. The MFOS aims to attain optimal global solutions with robust convergence and balanced search capabilities to improve DNA code lower bounds and coding rates for DNA storage. The ability of the MFOS to construct DNA coding sets is demonstrated through various experiments that use 19 state-of-the-art functions. Compared with the existing studies, the proposed approach with three different bioconstraints substantially improves the lower bounds of the DNA codes by 12-28% and significantly reduces errors.

摘要

DNA是一种实用的存储介质,具有高密度、耐用性以及适应呈指数级增长的数据量的能力。DNA序列结构是一个生物计算问题,需要满足生物约束条件来设计稳健的序列。现有的DNA序列进化方法在编码过程中会产生错误,这降低了用于分子杂交的DNA编码集的下限。此外,无序的DNA链会形成二级结构,在解码过程中容易出错。本文提出了一种基于协同飞蛾-火焰优化器的计算进化方法,通过莱维飞行和基于对立学习的变异策略,通过构建反向互补约束来优化这些问题。MFOS旨在获得具有稳健收敛性和平衡搜索能力的最优全局解,以提高DNA存储的DNA编码下限和编码率。通过使用19个最先进函数的各种实验,证明了MFOS构建DNA编码集的能力。与现有研究相比,所提出的具有三种不同生物约束的方法将DNA编码的下限大幅提高了12%-28%,并显著减少了错误。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff5/10067891/dc2c7e42c32b/fgene-14-1158337-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验