Zhang Jianxia
College of Mathematics and Information Science, Henan Normal University, Xinxiang 453003, China.
School of Intelligent Engineering, Henan Institute of Technology, Xinxiang 453003, China.
Entropy (Basel). 2024 Sep 11;26(9):778. doi: 10.3390/e26090778.
DNA molecules, as a storage medium, possess unique advantages. Not only does DNA storage exhibit significantly higher storage density compared to electromagnetic storage media, but it also features low energy consumption and extremely long storage times. However, the integration of DNA storage into daily life remains distant due to challenges such as low storage density, high latency, and inevitable errors during the storage process. Therefore, this paper proposes constructing a DNA storage coding set based on the Levy Sooty Tern Optimization Algorithm (LSTOA) to achieve an efficient random-access DNA storage system. Firstly, addressing the slow iteration speed and susceptibility to local optima of the Sooty Tern Optimization Algorithm (STOA), this paper introduces Levy flight operations and propose the LSTOA. Secondly, utilizing the LSTOA, this paper constructs a DNA storage encoding set to facilitate random access while meeting combinatorial constraints. To demonstrate the coding performance of the LSTOA, this paper consists of analyses on 13 benchmark test functions, showcasing its superior performance. Furthermore, under the same combinatorial constraints, the LSTOA constructs larger DNA storage coding sets, effectively reducing the read-write latency and error rate of DNA storage.
DNA分子作为一种存储介质,具有独特的优势。DNA存储不仅与电磁存储介质相比具有显著更高的存储密度,而且还具有低能耗和极长的存储时间。然而,由于诸如存储密度低、延迟高以及存储过程中不可避免的错误等挑战,DNA存储融入日常生活仍有很长的路要走。因此,本文提出基于列维乌黑燕鸥优化算法(LSTOA)构建DNA存储编码集,以实现高效的随机访问DNA存储系统。首先,针对乌黑燕鸥优化算法(STOA)迭代速度慢和易陷入局部最优的问题,本文引入列维飞行操作并提出LSTOA。其次,利用LSTOA,本文构建了一个DNA存储编码集,以在满足组合约束的同时便于随机访问。为了证明LSTOA的编码性能,本文对13个基准测试函数进行了分析,展示了其优越的性能。此外,在相同的组合约束下,LSTOA构建了更大的DNA存储编码集,有效降低了DNA存储的读写延迟和错误率。