IEEE Trans Med Imaging. 2023 Jun;42(6):1758-1773. doi: 10.1109/TMI.2023.3238067. Epub 2023 Jun 1.
Deep learning based approaches have achieved great success on the automatic cardiac image segmentation task. However, the achieved segmentation performance remains limited due to the significant difference across image domains, which is referred to as domain shift. Unsupervised domain adaptation (UDA), as a promising method to mitigate this effect, trains a model to reduce the domain discrepancy between the source (with labels) and the target (without labels) domains in a common latent feature space. In this work, we propose a novel framework, named Partial Unbalanced Feature Transport (PUFT), for cross-modality cardiac image segmentation. Our model facilities UDA leveraging two Continuous Normalizing Flow-based Variational Auto-Encoders (CNF-VAE) and a Partial Unbalanced Optimal Transport (PUOT) strategy. Instead of directly using VAE for UDA in previous works where the latent features from both domains are approximated by a parameterized variational form, we introduce continuous normalizing flows (CNF) into the extended VAE to estimate the probabilistic posterior and alleviate the inference bias. To remove the remaining domain shift, PUOT exploits the label information in the source domain to constrain the OT plan and extracts structural information of both domains, which are often neglected in classical OT for UDA. We evaluate our proposed model on two cardiac datasets and an abdominal dataset. The experimental results demonstrate that PUFT achieves superior performance compared with state-of-the-art segmentation methods for most structural segmentation.
基于深度学习的方法在自动心脏图像分割任务中取得了巨大的成功。然而,由于图像域之间存在显著差异,即域偏移,所达到的分割性能仍然有限。无监督域自适应 (UDA) 作为一种减轻这种影响的有前途的方法,旨在训练模型以在公共潜在特征空间中减少源域(有标签)和目标域(无标签)之间的域差异。在这项工作中,我们提出了一种名为部分不平衡特征传输 (PUFT) 的新框架,用于跨模态心脏图像分割。我们的模型利用两个基于连续正态化流的变分自动编码器 (CNF-VAE) 和部分不平衡最优传输 (PUOT) 策略来促进 UDA。与之前的工作中直接使用 VAE 进行 UDA 不同,我们引入了连续正态化流 (CNF) 到扩展的 VAE 中,以估计概率后验并减轻推理偏差。为了消除剩余的域偏移,PUOT 利用源域中的标签信息来约束 OT 计划,并提取两个域的结构信息,这在经典 UDA 的 OT 中经常被忽略。我们在两个心脏数据集和一个腹部数据集上评估了我们提出的模型。实验结果表明,与最先进的分割方法相比,PUFT 在大多数结构分割方面表现出更好的性能。