Suppr超能文献

MAPSeg:基于3D掩码自动编码和伪标签的异构医学图像分割统一无监督域适应

MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical Image Segmentation Based on 3D Masked Autoencoding and Pseudo-Labeling.

作者信息

Zhang Xuzhe, Wu Yuhao, Angelini Elsa, Li Ang, Guo Jia, Rasmussen Jerod M, O'Connor Thomas G, Wadhwa Pathik D, Jackowski Andrea Parolin, Li Hai, Posner Jonathan, Laine Andrew F, Wang Yun

机构信息

Columbia University.

Duke University.

出版信息

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2024 Jun;2024:5851-5862. doi: 10.1109/cvpr52733.2024.00559. Epub 2024 Sep 16.

Abstract

Robust segmentation is critical for deriving quantitative measures from large-scale, multi-center, and longitudinal medical scans. Manually annotating medical scans, however, is expensive and labor-intensive and may not always be available in every domain. Unsupervised domain adaptation (UDA) is a well-studied technique that alleviates this label-scarcity problem by leveraging available labels from another domain. In this study, we introduce Masked Autoencoding and Pseudo-Labeling Segmentation (MAPSeg), a UDA framework with great versatility and superior performance for heterogeneous and volumetric medical image segmentation. To the best of our knowledge, this is the first study that systematically reviews and develops a framework to tackle four different domain shifts in medical image segmentation. More importantly, MAPSeg is the first framework that can be applied to , , and UDA while maintaining comparable performance. We compare MAPSeg with previous state-of-the-art methods on a private infant brain MRI dataset and a public cardiac CT-MRI dataset, and MAPSeg outperforms others by a large margin (10.5 Dice improvement on the private MRI dataset and 5.7 on the public CT-MRI dataset). MAPSeg poses great practical value and can be applied to real-world problems. GitHub: https://github.com/Xuzhez/MAPSeg/.

摘要

稳健的分割对于从大规模、多中心和纵向医学扫描中获取定量测量至关重要。然而,手动标注医学扫描成本高昂且劳动强度大,而且并非在每个领域都能随时进行。无监督域适应(UDA)是一种经过充分研究的技术,它通过利用来自另一个域的可用标签来缓解这种标签稀缺问题。在本研究中,我们引入了掩码自动编码和伪标签分割(MAPSeg),这是一个具有很强通用性和卓越性能的UDA框架,用于异构和体积医学图像分割。据我们所知,这是第一项系统地回顾和开发一个框架来解决医学图像分割中四种不同域转移的研究。更重要的是,MAPSeg是第一个可以应用于 、 和UDA同时保持可比性能的框架。我们在一个私人婴儿脑MRI数据集和一个公共心脏CT-MRI数据集上,将MAPSeg与先前的最先进方法进行比较,MAPSeg的表现大幅优于其他方法(在私人MRI数据集上Dice系数提高了10.5,在公共CT-MRI数据集上提高了5.7)。MAPSeg具有很大的实用价值,可应用于实际问题。GitHub:https://github.com/Xuzhez/MAPSeg/

相似文献

1
MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical Image Segmentation Based on 3D Masked Autoencoding and Pseudo-Labeling.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2024 Jun;2024:5851-5862. doi: 10.1109/cvpr52733.2024.00559. Epub 2024 Sep 16.
4
Influence of early through late fusion on pancreas segmentation from imperfectly registered multimodal magnetic resonance imaging.
J Med Imaging (Bellingham). 2025 Mar;12(2):024008. doi: 10.1117/1.JMI.12.2.024008. Epub 2025 Apr 26.
7
Dual-Reference Source-Free Active Domain Adaptation for Nasopharyngeal Carcinoma Tumor Segmentation Across Multiple Hospitals.
IEEE Trans Med Imaging. 2024 Dec;43(12):4078-4090. doi: 10.1109/TMI.2024.3412923. Epub 2024 Dec 2.
8
ADPL: Adaptive Dual Path Learning for Domain Adaptation of Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2023 Aug;45(8):9339-9356. doi: 10.1109/TPAMI.2023.3248294. Epub 2023 Jun 30.
10
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.
Front Oncol. 2025 Jun 18;15:1480384. doi: 10.3389/fonc.2025.1480384. eCollection 2025.

引用本文的文献

1
Medical Image Segmentation: A Comprehensive Review of Deep Learning-Based Methods.
Tomography. 2025 Apr 30;11(5):52. doi: 10.3390/tomography11050052.

本文引用的文献

1
Federated learning for medical image analysis: A survey.
Pattern Recognit. 2024 Jul;151. doi: 10.1016/j.patcog.2024.110424. Epub 2024 Mar 12.
2
Unsupervised Domain Adaptation for Medical Image Segmentation Using Transformer With Meta Attention.
IEEE Trans Med Imaging. 2024 Feb;43(2):820-831. doi: 10.1109/TMI.2023.3322581. Epub 2024 Feb 2.
3
A Structure-Aware Framework of Unsupervised Cross-Modality Domain Adaptation via Frequency and Spatial Knowledge Distillation.
IEEE Trans Med Imaging. 2023 Dec;42(12):3919-3931. doi: 10.1109/TMI.2023.3318006. Epub 2023 Nov 30.
4
Partial Unbalanced Feature Transport for Cross-Modality Cardiac Image Segmentation.
IEEE Trans Med Imaging. 2023 Jun;42(6):1758-1773. doi: 10.1109/TMI.2023.3238067. Epub 2023 Jun 1.
5
FedMix: Mixed Supervised Federated Learning for Medical Image Segmentation.
IEEE Trans Med Imaging. 2023 Jul;42(7):1955-1968. doi: 10.1109/TMI.2022.3233405. Epub 2023 Jun 30.
6
X-Metric: An N-Dimensional Information-Theoretic Framework for Groupwise Registration and Deep Combined Computing.
IEEE Trans Pattern Anal Mach Intell. 2023 Jul;45(7):9206-9224. doi: 10.1109/TPAMI.2022.3225418. Epub 2023 Jun 5.
7
SynthStrip: skull-stripping for any brain image.
Neuroimage. 2022 Oct 15;260:119474. doi: 10.1016/j.neuroimage.2022.119474. Epub 2022 Jul 13.
8
Cortical-subcortical interactions in goal-directed behavior.
Physiol Rev. 2023 Jan 1;103(1):347-389. doi: 10.1152/physrev.00048.2021. Epub 2022 Jun 30.
9
10
A Novel 3D Unsupervised Domain Adaptation Framework for Cross-Modality Medical Image Segmentation.
IEEE J Biomed Health Inform. 2022 Oct;26(10):4976-4986. doi: 10.1109/JBHI.2022.3162118. Epub 2022 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验