Suppr超能文献

MAPSeg:基于3D掩码自动编码和伪标签的异构医学图像分割统一无监督域适应

MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical Image Segmentation Based on 3D Masked Autoencoding and Pseudo-Labeling.

作者信息

Zhang Xuzhe, Wu Yuhao, Angelini Elsa, Li Ang, Guo Jia, Rasmussen Jerod M, O'Connor Thomas G, Wadhwa Pathik D, Jackowski Andrea Parolin, Li Hai, Posner Jonathan, Laine Andrew F, Wang Yun

机构信息

Columbia University.

Duke University.

出版信息

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2024 Jun;2024:5851-5862. doi: 10.1109/cvpr52733.2024.00559. Epub 2024 Sep 16.

Abstract

Robust segmentation is critical for deriving quantitative measures from large-scale, multi-center, and longitudinal medical scans. Manually annotating medical scans, however, is expensive and labor-intensive and may not always be available in every domain. Unsupervised domain adaptation (UDA) is a well-studied technique that alleviates this label-scarcity problem by leveraging available labels from another domain. In this study, we introduce Masked Autoencoding and Pseudo-Labeling Segmentation (MAPSeg), a UDA framework with great versatility and superior performance for heterogeneous and volumetric medical image segmentation. To the best of our knowledge, this is the first study that systematically reviews and develops a framework to tackle four different domain shifts in medical image segmentation. More importantly, MAPSeg is the first framework that can be applied to , , and UDA while maintaining comparable performance. We compare MAPSeg with previous state-of-the-art methods on a private infant brain MRI dataset and a public cardiac CT-MRI dataset, and MAPSeg outperforms others by a large margin (10.5 Dice improvement on the private MRI dataset and 5.7 on the public CT-MRI dataset). MAPSeg poses great practical value and can be applied to real-world problems. GitHub: https://github.com/Xuzhez/MAPSeg/.

摘要

稳健的分割对于从大规模、多中心和纵向医学扫描中获取定量测量至关重要。然而,手动标注医学扫描成本高昂且劳动强度大,而且并非在每个领域都能随时进行。无监督域适应(UDA)是一种经过充分研究的技术,它通过利用来自另一个域的可用标签来缓解这种标签稀缺问题。在本研究中,我们引入了掩码自动编码和伪标签分割(MAPSeg),这是一个具有很强通用性和卓越性能的UDA框架,用于异构和体积医学图像分割。据我们所知,这是第一项系统地回顾和开发一个框架来解决医学图像分割中四种不同域转移的研究。更重要的是,MAPSeg是第一个可以应用于 、 和UDA同时保持可比性能的框架。我们在一个私人婴儿脑MRI数据集和一个公共心脏CT-MRI数据集上,将MAPSeg与先前的最先进方法进行比较,MAPSeg的表现大幅优于其他方法(在私人MRI数据集上Dice系数提高了10.5,在公共CT-MRI数据集上提高了5.7)。MAPSeg具有很大的实用价值,可应用于实际问题。GitHub:https://github.com/Xuzhez/MAPSeg/

相似文献

8
ADPL: Adaptive Dual Path Learning for Domain Adaptation of Semantic Segmentation.ADPL:用于语义分割领域自适应的自适应双路径学习。
IEEE Trans Pattern Anal Mach Intell. 2023 Aug;45(8):9339-9356. doi: 10.1109/TPAMI.2023.3248294. Epub 2023 Jun 30.

本文引用的文献

1
Federated learning for medical image analysis: A survey.用于医学图像分析的联邦学习:一项综述。
Pattern Recognit. 2024 Jul;151. doi: 10.1016/j.patcog.2024.110424. Epub 2024 Mar 12.
5
FedMix: Mixed Supervised Federated Learning for Medical Image Segmentation.FedMix:用于医学图像分割的混合监督联邦学习。
IEEE Trans Med Imaging. 2023 Jul;42(7):1955-1968. doi: 10.1109/TMI.2022.3233405. Epub 2023 Jun 30.
7
SynthStrip: skull-stripping for any brain image.SynthStrip:用于任何脑图像的头骨剥离。
Neuroimage. 2022 Oct 15;260:119474. doi: 10.1016/j.neuroimage.2022.119474. Epub 2022 Jul 13.
8
Cortical-subcortical interactions in goal-directed behavior.皮层-皮层下相互作用在目标导向行为中的作用。
Physiol Rev. 2023 Jan 1;103(1):347-389. doi: 10.1152/physrev.00048.2021. Epub 2022 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验