IEEE Trans Pattern Anal Mach Intell. 2023 Aug;45(8):10376-10393. doi: 10.1109/TPAMI.2023.3244951. Epub 2023 Jun 30.
We present RoReg, a novel point cloud registration framework that fully exploits oriented descriptors and estimated local rotations in the whole registration pipeline. Previous methods mainly focus on extracting rotation-invariant descriptors for registration but unanimously neglect the orientations of descriptors. In this paper, we show that the oriented descriptors and the estimated local rotations are very useful in the whole registration pipeline, including feature description, feature detection, feature matching, and transformation estimation. Consequently, we design a novel oriented descriptor RoReg-Desc and apply RoReg-Desc to estimate the local rotations. Such estimated local rotations enable us to develop a rotation-guided detector, a rotation coherence matcher, and a one-shot-estimation RANSAC, all of which greatly improve the registration performance. Extensive experiments demonstrate that RoReg achieves state-of-the-art performance on the widely-used 3DMatch and 3DLoMatch datasets, and also generalizes well to the outdoor ETH dataset. In particular, we also provide in-depth analysis on each component of RoReg, validating the improvements brought by oriented descriptors and the estimated local rotations. Source code and supplementary material are available at https://github.com/HpWang-whu/RoReg.
我们提出了 RoReg,这是一个新颖的点云配准框架,它充分利用了定向描述符和整个配准管道中的估计局部旋转。以前的方法主要集中于提取用于配准的旋转不变描述符,但一致忽略了描述符的方向。在本文中,我们表明,定向描述符和估计的局部旋转在整个配准管道中非常有用,包括特征描述、特征检测、特征匹配和变换估计。因此,我们设计了一种新的定向描述符 RoReg-Desc,并应用 RoReg-Desc 来估计局部旋转。这种估计的局部旋转使我们能够开发旋转引导的检测器、旋转一致性匹配器和单次估计 RANSAC,所有这些都极大地提高了配准性能。广泛的实验表明,RoReg 在广泛使用的 3DMatch 和 3DLoMatch 数据集上达到了最先进的性能,并且也很好地泛化到了户外 ETH 数据集。特别是,我们还对点云配准框架 RoReg 的每个组件进行了深入分析,验证了定向描述符和估计的局部旋转带来的改进。源代码和补充材料可在 https://github.com/HpWang-whu/RoReg 上获得。