Yang Jiaqi, Zhang Xiyu, Wang Peng, Guo Yulan, Sun Kun, Wu Qiao, Zhang Shikun, Zhang Yanning
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10645-10662. doi: 10.1109/TPAMI.2024.3442911. Epub 2024 Nov 6.
This paper presents a 3D registration method with maximal cliques (MAC) for 3D point cloud registration (PCR). The key insight is to loosen the previous maximum clique constraint and mine more local consensus information in a graph for accurate pose hypotheses generation: 1) A compatibility graph is constructed to render the affinity relationship between initial correspondences. 2) We search for maximal cliques in the graph, each representing a consensus set. 3) Transformation hypotheses are computed for the selected cliques by the SVD algorithm and the best hypothesis is used to perform registration. In addition, we present a variant of MAC if given overlap prior, called MAC-OP. Overlap prior further enhances MAC from many technical aspects, such as graph construction with re-weighted nodes, hypotheses generation from cliques with additional constraints, and hypothesis evaluation with overlap-aware weights. Extensive experiments demonstrate that both MAC and MAC-OP effectively increase registration recall, outperform various state-of-the-art methods, and boost the performance of deep-learned methods. For instance, MAC combined with GeoTransformer achieves a state-of-the-art registration recall of [Formula: see text] on 3DMatch / 3DLoMatch. We perform synthetic experiments on 3DMatch-LIR / 3DLoMatch-LIR, a dataset with extremely low inlier ratios for 3D registration in ultra-challenging cases.
本文提出了一种用于三维点云配准(PCR)的带最大团的三维配准方法(MAC)。关键思路是放宽先前的最大团约束,并在图中挖掘更多局部一致信息以生成精确的位姿假设:1)构建一个兼容性图来呈现初始对应关系之间的亲和关系。2)在图中搜索最大团,每个最大团代表一个一致集。3)通过奇异值分解(SVD)算法为选定的团计算变换假设,并使用最佳假设进行配准。此外,如果给定重叠先验信息,我们还提出了MAC的一个变体,称为MAC - OP。重叠先验信息从许多技术方面进一步增强了MAC,例如用重新加权的节点构建图、从带有附加约束的团生成假设以及用重叠感知权重进行假设评估。大量实验表明,MAC和MAC - OP都有效地提高了配准召回率,优于各种现有方法,并提升了深度学习方法的性能。例如,MAC与GeoTransformer相结合,在3DMatch / 3DLoMatch上实现了[公式:见原文]的最新配准召回率。我们在3DMatch - LIR / 3DLoMatch - LIR上进行了合成实验,这是一个在极具挑战性的情况下三维配准内点率极低的数据集。