Suppr超能文献

MAC:用于三维配准的最大团

MAC: Maximal Cliques for 3D Registration.

作者信息

Yang Jiaqi, Zhang Xiyu, Wang Peng, Guo Yulan, Sun Kun, Wu Qiao, Zhang Shikun, Zhang Yanning

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10645-10662. doi: 10.1109/TPAMI.2024.3442911. Epub 2024 Nov 6.

Abstract

This paper presents a 3D registration method with maximal cliques (MAC) for 3D point cloud registration (PCR). The key insight is to loosen the previous maximum clique constraint and mine more local consensus information in a graph for accurate pose hypotheses generation: 1) A compatibility graph is constructed to render the affinity relationship between initial correspondences. 2) We search for maximal cliques in the graph, each representing a consensus set. 3) Transformation hypotheses are computed for the selected cliques by the SVD algorithm and the best hypothesis is used to perform registration. In addition, we present a variant of MAC if given overlap prior, called MAC-OP. Overlap prior further enhances MAC from many technical aspects, such as graph construction with re-weighted nodes, hypotheses generation from cliques with additional constraints, and hypothesis evaluation with overlap-aware weights. Extensive experiments demonstrate that both MAC and MAC-OP effectively increase registration recall, outperform various state-of-the-art methods, and boost the performance of deep-learned methods. For instance, MAC combined with GeoTransformer achieves a state-of-the-art registration recall of [Formula: see text] on 3DMatch / 3DLoMatch. We perform synthetic experiments on 3DMatch-LIR / 3DLoMatch-LIR, a dataset with extremely low inlier ratios for 3D registration in ultra-challenging cases.

摘要

本文提出了一种用于三维点云配准(PCR)的带最大团的三维配准方法(MAC)。关键思路是放宽先前的最大团约束,并在图中挖掘更多局部一致信息以生成精确的位姿假设:1)构建一个兼容性图来呈现初始对应关系之间的亲和关系。2)在图中搜索最大团,每个最大团代表一个一致集。3)通过奇异值分解(SVD)算法为选定的团计算变换假设,并使用最佳假设进行配准。此外,如果给定重叠先验信息,我们还提出了MAC的一个变体,称为MAC - OP。重叠先验信息从许多技术方面进一步增强了MAC,例如用重新加权的节点构建图、从带有附加约束的团生成假设以及用重叠感知权重进行假设评估。大量实验表明,MAC和MAC - OP都有效地提高了配准召回率,优于各种现有方法,并提升了深度学习方法的性能。例如,MAC与GeoTransformer相结合,在3DMatch / 3DLoMatch上实现了[公式:见原文]的最新配准召回率。我们在3DMatch - LIR / 3DLoMatch - LIR上进行了合成实验,这是一个在极具挑战性的情况下三维配准内点率极低的数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验