Suppr超能文献

类团点云配准:一种基于类团的低重叠点云灵活采样配准方法

Clique-like Point Cloud Registration: A Flexible Sampling Registration Method Based on Clique-like for Low-Overlapping Point Cloud.

作者信息

Huang Xinrui, Gao Xiaorong, Li Jinlong, Luo Lin

机构信息

School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.

出版信息

Sensors (Basel). 2024 Aug 24;24(17):5499. doi: 10.3390/s24175499.

Abstract

Three-dimensional point cloud registration is a critical task in 3D perception for sensors that aims to determine the optimal alignment between two point clouds by finding the best transformation. Existing methods like RANSAC and its variants often face challenges, such as sensitivity to low overlap rates, high computational costs, and susceptibility to outliers, leading to inaccurate results, especially in complex or noisy environments. In this paper, we introduce a novel 3D registration method, CL-PCR, inspired by the concept of maximal cliques and built upon the SC-PCR framework. Our approach allows for the flexible use of smaller sampling subsets to extract more local consensus information, thereby generating accurate pose hypotheses even in scenarios with low overlap between point clouds. This method enhances robustness against low overlap and reduces the influence of outliers, addressing the limitations of traditional techniques. First, we construct a graph matrix to represent the compatibility relationships among the initial correspondences. Next, we build clique-likes subsets of various sizes within the graph matrix, each representing a consensus set. Then, we compute the transformation hypotheses for the subsets using the SVD algorithm and select the best hypothesis for registration based on evaluation metrics. Extensive experiments demonstrate the effectiveness of CL-PCR. In comparison experiments on the 3DMatch/3DLoMatch datasets using both FPFH and FCGF descriptors, our Fast-CL-PCRv1 outperforms state-of-the-art algorithms, achieving superior registration performance. Additionally, we validate the practicality and robustness of our method with real-world data.

摘要

三维点云配准是三维感知传感器中的一项关键任务,其目的是通过找到最佳变换来确定两个点云之间的最优对齐。像RANSAC及其变体这样的现有方法常常面临挑战,比如对低重叠率敏感、计算成本高以及易受离群值影响,从而导致结果不准确,尤其是在复杂或有噪声的环境中。在本文中,我们引入了一种新颖的三维配准方法CL-PCR,它受最大团概念的启发,并基于SC-PCR框架构建。我们的方法允许灵活使用较小的采样子集来提取更多局部一致信息,从而即使在点云之间重叠率低的场景中也能生成准确的位姿假设。该方法增强了对低重叠的鲁棒性,减少了离群值的影响,解决了传统技术的局限性。首先,我们构建一个图矩阵来表示初始对应关系之间的兼容性关系。接下来,我们在图矩阵内构建各种大小的类似团的子集,每个子集代表一个一致集。然后,我们使用奇异值分解(SVD)算法计算子集的变换假设,并根据评估指标选择最佳假设进行配准。大量实验证明了CL-PCR的有效性。在使用FPFH和FCGF描述符的3DMatch/3DLoMatch数据集上的对比实验中,我们的Fast-CL-PCRv1优于现有算法,实现了卓越的配准性能。此外,我们用真实世界数据验证了我们方法的实用性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/208a/11397900/f751697875cf/sensors-24-05499-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验