Suppr超能文献

纳米颗粒与手性分子的可控分级自组装成管状纳米复合材料

Controlled Hierarchical Self-Assembly of Nanoparticles and Chiral Molecules into Tubular Nanocomposites.

作者信息

Bi Yuting, Cheng Caikun, Zhang Zongze, Liu Rongjuan, Wei Jingjing, Yang Zhijie

机构信息

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

出版信息

J Am Chem Soc. 2023 Apr 6. doi: 10.1021/jacs.3c00636.

Abstract

In this work, we show how the kinetics of molecular self-assembly can be coupled with the kinetics of the colloidal self-assembly of inorganic nanoparticles, which in turn drives the formation of several distinct hierarchically assembled tubular nanocomposites with lengths over tens of micrometers. These colloidal nanoparticles primarily serve as "artificial histones," around which the as-assembled supramolecular fibrils are wound into deeply kinetically trapped single-layered nanotubes, which leads to the formation of tubular nanocomposites that are resistant to supramolecular transformation thermally. Alternatively, when these nanoparticles are aggregated prior to the event of molecular self-assembly, these as-formed nanoparticle "oligomers" would be encapsulated into the thermodynamically favored double-layer supramolecular nanotubes, which enables the non-close-packing of nanoparticles inside the nanotubes and results in the nanoparticle superlattices with an open channel. Furthermore, increasing the amounts of nanoparticles enables the assembly of nanoparticles into pseudohexagonal superlattices at the external surface in a sequential fashion, which ultimately drives the formation of triple-layered hierarchically assembled tubular nanocomposites. Importantly, the sense of helicity transfers from the supramolecular nanotubes to the pseudo nanoparticle superlattices with a chiral vector of (2, 9). Our findings represent a strategy for controlling the hierarchical assembly bridging supramolecular chemistry to the inorganic solids to realize the complexity by design.

摘要

在这项工作中,我们展示了分子自组装动力学如何与无机纳米粒子的胶体自组装动力学相结合,这反过来又驱动了几种不同的分级组装管状纳米复合材料的形成,其长度超过几十微米。这些胶体纳米粒子主要充当“人工组蛋白”,组装好的超分子原纤维围绕它们缠绕成动力学上深陷的单层纳米管,这导致形成对热超分子转变具有抗性的管状纳米复合材料。或者,当这些纳米粒子在分子自组装之前聚集时,这些形成的纳米粒子“低聚物”将被包裹在热力学上有利的双层超分子纳米管中,这使得纳米粒子在纳米管内非紧密堆积,并导致具有开放通道的纳米粒子超晶格。此外,增加纳米粒子的量能够使纳米粒子以连续的方式在外表面组装成伪六边形超晶格,这最终驱动了三层分级组装管状纳米复合材料的形成。重要的是,螺旋方向以(2, 9)的手性向量从超分子纳米管转移到伪纳米粒子超晶格。我们的发现代表了一种控制分级组装的策略,将超分子化学与无机固体联系起来,通过设计实现复杂性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验