Suppr超能文献

GRAB-Net:基于图的边界感知网络用于医学点云分割。

GRAB-Net: Graph-Based Boundary-Aware Network for Medical Point Cloud Segmentation.

出版信息

IEEE Trans Med Imaging. 2023 Sep;42(9):2776-2786. doi: 10.1109/TMI.2023.3265000. Epub 2023 Aug 31.

Abstract

Point cloud segmentation is fundamental in many medical applications, such as aneurysm clipping and orthodontic planning. Recent methods mainly focus on designing powerful local feature extractors and generally overlook the segmentation around the boundaries between objects, which is extremely harmful to the clinical practice and degenerates the overall segmentation performance. To remedy this problem, we propose a GRAph-based Boundary-aware Network (GRAB-Net) with three paradigms, Graph-based Boundary-perception Module (GBM), Outer-boundary Context-assignment Module (OCM), and Inner-boundary Feature-rectification Module (IFM), for medical point cloud segmentation. Aiming to improve the segmentation performance around boundaries, GBM is designed to detect boundaries and interchange complementary information inside semantic and boundary features in the graph domain, where semantics-boundary correlations are modelled globally and informative clues are exchanged by graph reasoning. Furthermore, to reduce the context confusion that degenerates the segmentation performance outside the boundaries, OCM is proposed to construct the contextual graph, where dissimilar contexts are assigned to points of different categories guided by geometrical landmarks. In addition, we advance IFM to distinguish ambiguous features inside boundaries in a contrastive manner, where boundary-aware contrast strategies are proposed to facilitate the discriminative representation learning. Extensive experiments on two public datasets, IntrA and 3DTeethSeg, demonstrate the superiority of our method over state-of-the-art methods.

摘要

点云分割在许多医学应用中至关重要,如动脉瘤夹闭和正畸规划。最近的方法主要侧重于设计强大的局部特征提取器,而普遍忽略了对象边界周围的分割,这对临床实践极为有害,并降低了整体分割性能。为了解决这个问题,我们提出了一种基于图的边界感知网络(GRAB-Net),它具有三个范式:基于图的边界感知模块(GBM)、外部边界上下文分配模块(OCM)和内部边界特征修正模块(IFM),用于医学点云分割。为了提高边界周围的分割性能,GBM 旨在检测边界,并在图域中交换语义和边界特征内部的互补信息,其中全局建模语义-边界相关性,并通过图推理交换信息线索。此外,为了减少边界外的上下文混淆,降低分割性能,我们提出了 OCM 来构建上下文图,其中不同类别的点由几何地标引导分配不同的上下文。此外,我们提出了 IFM 以对比的方式区分边界内的模糊特征,其中提出了边界感知对比策略来促进有鉴别力的表示学习。在两个公共数据集,Intra 和 3DTeethSeg 上的广泛实验证明了我们的方法优于最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验