Suppr超能文献

机器学习预测 MHC-II 特异性揭示了 II 类抗原表位的另一种结合模式。

Machine learning predictions of MHC-II specificities reveal alternative binding mode of class II epitopes.

机构信息

Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.

Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland.

出版信息

Immunity. 2023 Jun 13;56(6):1359-1375.e13. doi: 10.1016/j.immuni.2023.03.009. Epub 2023 Apr 5.

Abstract

CD4 T cells orchestrate the adaptive immune response against pathogens and cancer by recognizing epitopes presented on class II major histocompatibility complex (MHC-II) molecules. The high polymorphism of MHC-II genes represents an important hurdle toward accurate prediction and identification of CD4 T cell epitopes. Here we collected and curated a dataset of 627,013 unique MHC-II ligands identified by mass spectrometry. This enabled us to precisely determine the binding motifs of 88 MHC-II alleles across humans, mice, cattle, and chickens. Analysis of these binding specificities combined with X-ray crystallography refined our understanding of the molecular determinants of MHC-II motifs and revealed a widespread reverse-binding mode in HLA-DP ligands. We then developed a machine-learning framework to accurately predict binding specificities and ligands of any MHC-II allele. This tool improves and expands predictions of CD4 T cell epitopes and enables us to discover viral and bacterial epitopes following the aforementioned reverse-binding mode.

摘要

CD4 T 细胞通过识别 II 类主要组织相容性复合体 (MHC-II) 分子上呈现的表位来协调针对病原体和癌症的适应性免疫反应。MHC-II 基因的高度多态性是准确预测和鉴定 CD4 T 细胞表位的一个重要障碍。在这里,我们收集并整理了一个由质谱法鉴定的 627,013 个独特 MHC-II 配体的数据集。这使我们能够精确确定 88 个人类、小鼠、牛和鸡 MHC-II 等位基因的结合基序。对这些结合特异性的分析结合 X 射线晶体学,深化了我们对 MHC-II 基序分子决定因素的理解,并揭示了 HLA-DP 配体中广泛存在的反向结合模式。然后,我们开发了一种机器学习框架,可准确预测任何 MHC-II 等位基因的结合特异性和配体。该工具改进和扩展了 CD4 T 细胞表位的预测,并使我们能够发现上述反向结合模式下的病毒和细菌表位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验