Suppr超能文献

胶质母细胞瘤中缺氧相关lncRNA特征的预后分析及其泛癌格局

Prognostic Analysis of a Hypoxia-Associated lncRNA Signature in Glioblastoma and its Pan-Cancer Landscape.

作者信息

Qin Yue, Zhang Xiaonan, Chen Yulei, Zhang Wan, Du Shasha, Ren Chen

机构信息

Department of Radiation Oncology, Southern Medical University, Guangzhou, China.

Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China.

出版信息

J Neurol Surg A Cent Eur Neurosurg. 2024 Jul;85(4):378-388. doi: 10.1055/a-2070-3715. Epub 2023 Apr 6.

Abstract

BACKGROUND

Hypoxia is an important clinical feature of glioblastoma (GBM), which regulates a variety of tumor processes and is inseparable from radiotherapy. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) are strongly associated with survival outcomes in GBM patients and modulate hypoxia-induced tumor processes. Therefore, the aim of this study was to establish a hypoxia-associated lncRNAs (HALs) prognostic model to predict survival outcomes in GBM patients.

METHODS

LncRNAs in GBM samples were extracted from The Cancer Genome Atlas database. Hypoxia-related genes were downloaded from the Molecular Signature Database. Co-expression analysis of differentially expressed lncRNAs and hypoxia-related genes in GBM samples was performed to determine HALs. Six optimal lncRNAs were selected for building HALs models by univariate Cox regression analysis.

RESULTS

The prediction model has a good predictive effect on the prognosis of GBM patients. Meanwhile, among the six lncRNAs was selected and subjected to pan-cancer landscape analysis.

CONCLUSION

Taken together, our findings suggest that the HALs assessment model can be used to predict the prognosis of GBM patients. In addition, LINC00957 included in the model may be a useful target to study the mechanism of cancer development and design individualized treatment strategies.

摘要

背景

缺氧是胶质母细胞瘤(GBM)的一个重要临床特征,它调节多种肿瘤进程,且与放疗密切相关。越来越多的证据表明,长链非编码RNA(lncRNA)与GBM患者的生存结果密切相关,并调节缺氧诱导的肿瘤进程。因此,本研究的目的是建立一个缺氧相关lncRNA(HAL)预后模型,以预测GBM患者的生存结果。

方法

从癌症基因组图谱数据库中提取GBM样本中的lncRNA。从分子特征数据库下载缺氧相关基因。对GBM样本中差异表达的lncRNA和缺氧相关基因进行共表达分析,以确定HAL。通过单变量Cox回归分析选择六个最佳lncRNA构建HAL模型。

结果

该预测模型对GBM患者的预后具有良好的预测效果。同时,对所选的六个lncRNA进行泛癌景观分析。

结论

综上所述,我们的研究结果表明,HAL评估模型可用于预测GBM患者的预后。此外,模型中包含的LINC00957可能是研究癌症发展机制和设计个体化治疗策略的有用靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验