Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany.
Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29637-29646. doi: 10.1073/pnas.2007979117. Epub 2020 Nov 5.
Pinholin S68 triggers the lytic cycle of bacteriophage φ21 in infected Activated transmembrane dimers oligomerize into small holes and uncouple the proton gradient. Transmembrane domain 1 (TMD1) regulates this activity, while TMD2 is postulated to form the actual "pinholes." Focusing on the TMD2 fragment, we used synchrotron radiation-based circular dichroism to confirm its α-helical conformation and transmembrane alignment. Solid-state N-NMR in oriented DMPC bilayers yielded a helix tilt angle of τ = 14°, a high order parameter ( = 0.9), and revealed the azimuthal angle. The resulting rotational orientation places an extended glycine zipper motif (GxxxSxxxG) together with a patch of H-bonding residues (T, T, N) sideways along TMD2, available for helix-helix interactions. Using fluorescence vesicle leakage assays, we demonstrate that TMD2 forms stable holes with an estimated diameter of 2 nm, as long as the glycine zipper motif remains intact. Based on our experimental data, we suggest structural models for the oligomeric pinhole (right-handed heptameric TMD2 bundle), for the active dimer (right-handed Gly-zipped TMD2/TMD2 dimer), and for the full-length pinholin protein before being triggered (Gly-zipped TMD2/TMD1-TMD1/TMD2 dimer in a line).
Pinholin S68 触发噬菌体 φ21 的裂解周期 在感染的细胞中,激活的跨膜二聚体寡聚化形成小孔,并使质子梯度解偶联。跨膜结构域 1(TMD1)调节这种活性,而 TMD2 被假定为形成实际的“小孔”。我们专注于 TMD2 片段,使用基于同步辐射的圆二色性来确认其α-螺旋构象和跨膜排列。在定向的 DMPC 双层中进行固态 N-NMR,得出螺旋倾斜角 τ = 14°,高阶参数( = 0.9),并揭示了方位角。由此产生的旋转取向将一个扩展的甘氨酸拉链基序(GxxxSxxxG)与一个氢键残基(T、T、N)补丁沿 TMD2 侧向排列,可用于螺旋-螺旋相互作用。使用荧光囊泡渗漏测定法,我们证明只要甘氨酸拉链基序保持完整,TMD2 就可以形成稳定的孔,直径估计为 2nm。基于我们的实验数据,我们提出了寡聚孔(右手七聚体 TMD2 束)、活性二聚体(右手甘氨酸拉链 TMD2/TMD2 二聚体)以及全长触发前的 pinholin 蛋白(Gly-zipped TMD2/TMD1-TMD1/TMD2 二聚体成一直线)的结构模型。