Suppr超能文献

使用原子力显微镜测量和多物理场模拟对卵母细胞力学行为进行建模与验证

Modeling and Validation of Oocyte Mechanical Behavior Using AFM Measurement and Multiphysics Simulation.

作者信息

Du Yue, Cai Yu, Yang Zhanli, Gao Ke, Sun Mingzhu, Zhao Xin

机构信息

School of Computer and Information Science, Qinghai Institute of Technology, Xining 810016, China.

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, The Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, The Tianjin Key Laboratory of intelligent Robotics (tiKLIR), Institute of Robotics and Automatic Information System (IRAIS), College of Artificial Intelligence, Nankai University, Tianjin 300350, China.

出版信息

Sensors (Basel). 2025 Sep 3;25(17):5479. doi: 10.3390/s25175479.

Abstract

Mechanical models are capable of simulating the deformation and stress distribution of oocytes under external forces, thereby providing insights into the underlying mechanisms of intracellular mechanical responses. Interactions with micromanipulation tools involve forces like compression and punction, which are effectively analyzed using principles of solid mechanics. Alternatively, fluid-structure interactions, such as shear stress at fluid junctions or pressure gradients within microchannels, are best described by a multiphase flow model. Developing the two models instead of a single comprehensive model is necessary due to the distinct nature of cell-tool interactions and cell-fluid interactions. In this study, we developed a finite element (FE) model of porcine oocytes that accounts for the viscoelastic properties of the zona pellucida (ZP) and cytoplasm for the case when the oocytes interacted with a micromanipulation tool. Atomic force microscopy (AFM) was employed to measure the Young's modulus and creep behavior of these subcellular components that were incorporated into the FE model. When the oocyte was solely interacting with the fluids, we simulated oocyte deformation in microfluidic channels by modeling the oocyte-culture-medium system as a three-phase flow, considering the non-Newtonian behavior of the oocyte's components. Our results show that the Young's modulus of the ZP and cytoplasm were determined to be 7 kPa and 1.55 kPa, respectively, highlighting the differences in the mechanical properties between these subcomponents. Using the developed layered FE model, we accurately simulated oocyte deformation during their passage through a narrow-necked micropipette, with a deformation error of approximately 5.2% compared to experimental results. Using the three-phase flow model, we effectively simulated oocyte deformation in microfluidic channels under various pressures, validating the model's efficacy through close agreement with experimental observations. This work significantly contributes to assessing oocyte quality and serves as a valuable tool for advancing cell mechanics studies.

摘要

力学模型能够模拟卵母细胞在外力作用下的变形和应力分布,从而深入了解细胞内力学响应的潜在机制。与显微操作工具的相互作用涉及压缩和穿刺等力,利用固体力学原理可以有效地分析这些力。另外,流体 - 结构相互作用,如流体连接处的剪切应力或微通道内的压力梯度,最好用多相流模型来描述。由于细胞 - 工具相互作用和细胞 - 流体相互作用的性质不同,开发这两种模型而不是单一的综合模型是必要的。在本研究中,我们针对猪卵母细胞与显微操作工具相互作用的情况,开发了一个有限元(FE)模型,该模型考虑了透明带(ZP)和细胞质的粘弹性特性。采用原子力显微镜(AFM)测量这些亚细胞成分的杨氏模量和蠕变行为,并将其纳入FE模型。当卵母细胞仅与流体相互作用时,我们通过将卵母细胞 - 培养基系统建模为三相流,考虑卵母细胞成分的非牛顿行为,模拟了微流控通道中的卵母细胞变形。我们的结果表明,ZP和细胞质的杨氏模量分别确定为7 kPa和1.55 kPa,突出了这些亚成分之间力学性能的差异。使用开发的分层FE模型,我们准确模拟了卵母细胞通过窄颈微吸管时的变形,与实验结果相比,变形误差约为5.2%。使用三相流模型,我们有效地模拟了在各种压力下微流控通道中的卵母细胞变形,通过与实验观察结果的密切吻合验证了模型的有效性。这项工作对评估卵母细胞质量有显著贡献,并作为推进细胞力学研究的有价值工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验